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Resumo 

 

   Previa-se que, em 2020, existiriam cerca de 26 mil milhões de dispositivos ligados à internet, 

com veículos a ocupar uma grande percentagem deste número. A Internet de Veículos (IdV) é um 

conceito que se refere à conexão e cooperação de veículos e dispositivos inteligentes numa rede 

através da produção, partilha e processamento de dados e que tem como objetivo a melhoria das 

condições de trânsito, do tempo médio de viagem e do conforto dos utilizadores, ajudando à 

redução dos níveis de poluição e acidentes. No entanto, a partilha de dados privados, como a 

localização, tem de ser completamente protegida de modo a salvaguardar os veículos e os seus 

condutores, visto que esta informação pode ser utilizada por agentes maliciosos, o que pode 

comprometer a segurança dos veículos e dos seus possíveis passageiros, especialmente com o 

desenvolvimento de carros com condução autónoma. 

   Blockchain é uma tecnologia relativamente recente (i.e., 2008) que garante confiança entre 

dispositivos numa rede através do uso de mecanismos de criptografia e protocolos de consenso 

em ambientes distribuídos e não confiáveis, como as redes IdV. Assim sendo, tem-se feito muita 

pesquisa sobre como implementar e integrar aplicações e soluções baseadas em Blockchain em 

redes IdV, visto que a primeira oferece soluções para problemas críticos que existem na segunda, 

como a falta de segurança e privacidade. Porém, estas implementações têm de ter em conta os 

recursos limitados dos dispositivos na IdV, já que não são suficientes a nível de poder 

computacional e energia para suportar sistemas tradicionais de Blockchain, que utilizam 

protocolos de consenso baseados em Proof-of-Work. Protocolos de consenso deste tipo requerem 

a resolução de um problema matemático com cálculos extremamente complexos, que consomem 

bastantes recursos, a um nível energético, destes dispositivos e exigem a existência de capacidades 

computacionais elevadas, ou os tempos de execução dos algoritmos será tão grande que a 

eficiência dos mesmos não é suficiente para estes ambientes com trocas constantes de informação. 

Esta questão é uma das maiores limitações para a implementação de soluções baseadas em 

plataformas de Blockchain na IdV. 

   Esta Dissertação tem como foco, então, introduzir e explicar uma proposta de solução para o 

problema referido, através da implementação de duas alternativas leves baseadas em primitivas 

criptográficas para atingir consenso e garantir confiança entre os nós que participam na rede, com 

resultados semelhantes a mecanismos tradicionais de Blockchain em termos de segurança e com 

menos consumo de recursos computacionais e energia. Estas soluções também são denominadas 

como Communication-Enforcing Schemes (CES) porque requerem que o nó que “assina a 

mensagem” (i.e., faz hash do bloco) tenha de receber toda a mensagem de quem envia, ou o 

resultado será incorreto. Esta propriedade impede a existência de um problema proeminente em 

redes peer-to-peer (P2P), como pode ser o caso das IdV: o free riding, que consiste em nós que 

utilizam a rede para seu benefício sem participar ativamente na mesma, o que viria a beneficiar 

os outros peers.  

   O primeiro esquema apresentado, CBC-RSA, divide a mensagem recebida em blocos, faz o hash 

de cada divisão e une a informação toda novamente. No entanto, para evitar que o tamanho do 

resultado final seja maior que a mensagem original, aplica-se um protocolo de Cipher-block 
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chaining (CBC) para manter o tamanho do resultado. Para o processo de verificação, o algoritmo 

realiza o processo no sentido inverso, desencriptando sequencial a mensagem de trás para a frente, 

com as chaves públicas do nó que criou a assinatura, para poder comparar os valores. Se o bloco 

tiver sido alterado, depois de ser introduzido na Blockchain, os valores desencriptados serão 

diferentes do que os que serão obtidos da mensagem atual. 

   O segundo esquema, chamado Two-root RSA, divide a mensagem recebida em blocos, também, 

e cria um vetor inicial de bytes, preenchido de forma aleatória. Com essa informação, constrói 

uma equação polinomial de grau igual ao número de divisões da mensagem original. De seguida, 

o algoritmo tenta encontrar duas raízes desse polinómio e, se não encontrar, cria um vetor inicial 

novo e repete o processo até encontrar duas raízes válidas. Para fazer a verificação de dados, o 

algoritmo utiliza o vetor inicial e a mensagem original, cria a equação polonimal e utiliza as duas 

raízes encontradas para verificar se as mesmas ainda o são (raízes) para a equação criada com 

mensagem guardada no respetivo bloco. Se o bloco tiver sido alterado de forma maliciosa, o valor 

resultante será diferente de 0 para as raízes fornecidas, o que será detetado. 

   Estes dois algoritmos foram implementados recorrendo à linguagem de programação Golang, 

que é a linguagem base das plataformas de Blockchain mais conhecidas, como o Hyperledger e o 

Ethereum. Foram, posteriormente, introduzidos na plataforma Ethereum  ̧pois era a que tinha um 

protocolo baseado em PoW incorporado de início, ao contrário do Hyperledger, que utiliza uma 

versão do protocolo RAFT, pelo que seria necessário criar um terceiro protocolo PoW para fazer 

comparações em termos de consumo e tempos de computação.  

   Para obter os dados, foram realizados testes em dispositivos diferentes, um com menos recursos 

computacionais (Raspberry Pi com 4GB RAM) e outro, um computador regular (8GB RAM). 

Estes testes serviram para comparar as diferenças entre os tempos de computação das criações de 

hashes de um computador regular e de um dispositivo semelhante aos que existem em redes IdV. 

Para simular um caso real, onde existe interação entre veículos, os dados de troca de mensagens 

entre veículos foram obtidos através de um simulador de redes veiculares (Veins). Esse registo de 

troca de mensagens foi, posteriormente, transformado em transações entre os nós da rede 

Ethereum, que foram aplicadas durante a execução de vários nós, a funcionar na mesma rede, 

para simular uma situação real de troca de mensagens entre os veículos e introdução de 

informação na Blockchain, e assim obter-se resultados o mais semelhantes à realidade. 

   A avaliação de desempenho mostra que os mecanismos de consenso apresentados são, 

aproximadamente, até 12000 vezes mais rápidos a fazer o hashing dos blocos e até 40000 vezes 

mais rápido a verificar essa hash, que o protocolo utilizado atualmente na plataforma Ethereum, 

o Ethash. Para encriptar a informação, o CBC-RSA é mais rápido que o Two-root RSA, devido à 

complexidade dos cálculos matemáticos do segundo, mas, na verificação de integridade, os 

lugares invertem-se, sendo o Two-root RSA geralmente mais rápido, visto que o processo deste é 

bastante mais simples que a desencriptação necessária para a verificação de uma assinatura com 

CBC-RSA. 

   Com os resultados obtidos, é possível concluir que os algoritmos apresentados se mostram, 

então, como soluções viáveis para o problema de recursos reduzidos presente nos dispositivos da 

IdV, utilizando menos recursos computacionais e requerendo menos tempo de execução que um 

método tradicional de consenso baseado em PoW, como é o caso do Ethash, garantido segurança, 

assegurada matematicamente pelas provas apresentadas no desenho dos algoritmos. O facto de 
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serem desenvolvidos em Golang adiciona uma camada de flexibilidade de implementação e 

integração noutros sistemas, visto que é uma linguagem recente e utilizada nas maiores 

plataformas de Blockchain utilizadas para pesquisa científica e desenvolvimento de aplicações, 

como é o caso do Hyperledger. 

   Futuramente, a generalização dos algoritmos para mais divisões da mensagem inicial é uma das 

propostas de desenvolvimento, de forma a avaliar, em termos de desempenho e tempo de 

encriptação e criação de assinaturas, de que modo o aumento do número de divisões poderá afetar 

a segurança e a eficiência dos protocolos, seja positiva, seja negativamente. Alterações ao modo 

de mineração de blocos do Ethereum, para algo periódico ou baseado em eventos poderia ser, 

também, uma mais-valia para a redução no consumo de recursos em dispositivos limitados a este 

nível. 

Palavras-chave: Internet de Veículos; Blockchain; Partilha de informação; Criptografia; 

Consenso distribuído 
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Abstract 

 

   It had been predicted that by 2020, nearly 26 billion devices would be connected to the internet, 

with a big percentage being vehicles. The Internet of Vehicles is a concept that refers to the 

connection and cooperation of smart vehicles and devices in a network, through the generation, 

transmission, and processing of data that aims at improving traffic congestion, travel time, and 

comfort, all the while reducing pollution and accidents. However, this transmission of sensitive 

data (e.g., location) needs to occur with defined security properties to safeguard vehicles and their 

drivers, since this data could be used by attackers. 

   Blockchain is a fairly recent technology that guarantees trust between nodes through the usage 

of cryptography mechanisms and consensus protocols in distributed, untrustful environments, like 

IoV networks. As such a lot of research has been made in implementing the former in the latter 

to impressive results, as Blockchain can cover and offer solutions to a lot of problems of IoV 

networks. However, these implementations have to deal with the challenge of resource constraints 

in IoV, since they do not suffice for the computational and energy requirements of traditional 

Blockchain systems, which is one of the biggest limitations of Blockchain implementations in 

IoV. 

   This dissertation aims at introducing and explaining a proposed solution to this problem by 

implementing lightweight alternatives based on cryptographic primitives to achieve consensus on 

the global state and ensure trust between the nodes that participate in the IoV network, with similar 

results to regular Blockchain mechanisms in the terms of security properties and less resource 

consumption in terms of computational power and energy usage.  

   Performance evaluation results show that the proposed consensus mechanisms are 

approximately 12000 times faster when hashing a block and up to 40000 times faster when 

verifying said hash, than the Proof-of-Work-based protocol that is presently used in Ethereum, 

Ethash. 

 

Keywords: Internet of Vehicles; Blockchain; Cryptography; Distributed Consensus; Lightweight 

Protocol 
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Capítulo 1 Introduction 

 Motivation 

   The Internet of Vehicles (IoV) is a decentralized technology that expands from the preexisting 

Vehicular Ad-hoc Networks (VANETs) [1] while aiming at large-scale city-level coverage. IoV 

objectively offers the means of communication between nodes (vehicles, infrastructure, sensors, 

etc.) in a network by unifying various technologies. 

   IoV aims to provide services and solutions that improve comfort, fuel consumption, and traffic 

congestion seamlessly, or that allow for media streaming, file sharing, etc., all the while ensuring 

the satisfaction, security, and privacy of vehicles and users in the network and real-life [2]. 

   IoV faces challenges on many fronts [3], such as dealing with resource constraints of devices in 

the network (e.g., low battery, reduced computational power), which limits algorithm and 

application development, the lack of means to deal with constant node mobility in a seamless 

fashion, which can increase latency and decrease performance due to frequent handovers, or even 

in big data management, since is constantly generated by devices in IoV networks, it can cause 

network congestion and reduce performance. 

   However, the most important challenge to face is security and privacy, due to the sensitive 

nature of the shared data (i.e., location, state of the car, personal data, pictures). This is because 

vehicles work in unprotected, heterogeneous, and vulnerable environments that cannot ensure 

trust between nodes by themselves and open up the possibility for cyber-attacks and exploitations 

[4], which are imperative to deal with as one mistake, or malicious attack, could lead to accidents 

and, in worst-case scenarios, endanger human lives. The trust problem could be solved by 

introducing a third-party authority that validates every transaction between devices, but not only 

does this introduce a single point of failure, but it also decreases the throughput of operations, 

which is not beneficial in IoV scenarios. 

   The Blockchain, firstly presented as the underlying technology of Bitcoin [5], is a distributed 

ledger (or database) of transactions between nodes in a network that ensures various security and 

privacy properties, such as data authentication, data non-repudiation, privacy, traceability, and 

immutability, through the implementation of cryptography, digital signatures and consensus 

protocols. Through these characteristics, and later the implementation of Smart Contracts, 

Blockchain can solve the trust problem of decentralized networks without a third-party authority, 

removing the single point of failure problem. Blockchain also provides the benefit of 

interoperability since it is deployed on top of an overlay Peer-to-Peer (P2P) network. The sum of 

all these assets makes Blockchain an ideal technology to solve the security and privacy problems 

of IoV. 
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 Problem 

   Even with the great benefits Blockchain presents, there is a problem with weight of the 

underlying technologies and their effects on IoV devices and their restrictions. Typical 

Blockchain implementations use consensus protocols that propose a hard-to-solve problem that 

requires a lot of computational power and energy consumption and that proves to be detrimental 

to the resource-constrained devices (i.e., sensors) that proliferate in IoV networks. With these 

high power and energy requirements for traditional Blockchain implementations, the referred 

devices can barely compute the algorithms or end up computing them in greater time periods, 

which is not desirable, for example, when reporting accidents and other emergency events, or 

even during regular communication times, since the blockchain will not receive and take note of 

these communications in a useful period of time. These events require fast communication times 

and a fast spread of information. If a Blockchain system was to be introduced in IoV, then the 

consensus algorithms used on the creation of blocks need to be as fast as possible, while retaining 

security properties, as to cause as little an impact as possible on the communication processes. 

 Objectives 

   Given the resource constraints of IoV elements, i.e., vehicles, Roadside Units, among others, 

the goal of this dissertation is to implement and evaluate lightweight cryptographic alternatives 

to the Blockchain’s hard-to-solve consensus mechanism, making it require fewer resources while 

achieving similar results in efficacy. These implementations will then be integrated into a 

vehicular network scenario through the usage of a Blockchain platform that has pluggable 

consensus and allows for the integration of own protocols (e.g., Hyperledger, Ethereum) and a 

network simulator compatible with the latter (e.g., NS-3, Veins). 

 Contributions 

   As a result of this work, two research papers were elaborated/published. 

   The first article is entitled “Blockchain-Based Solutions for UAV-assisted Connected Vehicle 

Networks in Smart Cities: A Review, Open Issues, and Future Perspectives” [6]. It reviewed the 

Internet of Vehicles and Blockchain state-of-the-art, with some references on unmanned aerial 

vehicles and smart cities. It was published on the 12th of March of 2021, in Telecom. Telecom is 

an open-access, peer-reviewed journal of communications and networks that is published by the 

Multidisciplinary Publishing Institute (MDPI). As of the time of writing, the article has reached 

1896 Full-text views and 1150 Abstract views. 

   Another article, entitled “Lightweight Blockchain Consensus Mechanisms for the Internet of 

Vehicles” has been submitted for publication in a top-tier international journal. 

 

 

 Document structure 

   The document is organized as follows:  
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• Chapter 2 describes the background and related work on the area, presenting the basic 

ideas, definitions, applications, and challenges of the Internet of Vehicles and Blockchain, 

and how they have been used together.  

• Chapter 3 describes the design and implementation of the proposed approaches in the 

Ethereum Blockchain platform. 

• Chapter 4 depicts the evaluation process, results, and conclusions, with remarks on 

limitations encountered along the way and impediments found with Ethereum and 

Golang. 

• Chapter 5 presents the conclusion of this report and, by association, of this work. 
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Capítulo 2 Background and Related Work 

   In order to better understand the scale and importance of the resource restraint problem on 

Blockchain implementations and development, and how the Internet of Vehicles and Blockchain 

meet, this part of the report will present a review on the state of the art of the Internet of Vehicles 

and Blockchain as of current research, introducing the concepts, architecture, benefits, 

applications, and challenges of both technologies. Finally, some applications of Blockchain for 

the Internet of Vehicles are described, and multiple tools utilized to simulate and evaluate these 

applications are listed and compared. 

 Internet of Vehicles 

   It had been predicted by R. James et al [7] that, by 2020, there would be, at minimum, 26 billion 

devices connected in some form to the Internet. D. Gary [8] predicted that this number would 

reach double that, up to 50 billion. Out of this number, vehicles are expected to occupy a large 

percentage, making it extremely important to invest in research on open problems and 

vulnerabilities that this number of connected devices brings out to the open. The main purpose of 

IoV is to enhance the efficacy, efficiency, and comfort of transportation and the facility level of 

cities, reduce costs, and ensure customer satisfaction [2].  

2.1.1  Definition 

   With the growth of entities in VANETs over the years, new requirements appear that have to 

be fulfilled in order to appeal to the user’s needs. In a vehicular network, vehicles frequently 

produce enormous amounts of data (from internal mechanical data to data related to the road or 

traffic state). The processing, analyzing, and evaluation of these large amounts of data is an 

arduous task that VANETs cannot handle due to the limited processing power of their devices. 

The limited applications of entrusted Internet services [9] and the connection/disconnection of 

vehicles due to getting in and out of the coverage area [10] are also noticeable constraints in 

VANETs, which drive the evolution towards the IoV. As such, vehicles in VANETs need to 

become “smart” objects that work cooperatively to ease tasks’ weight. This smart cooperation 

marks the line where VANETs start evolving into the IoV, as defined by the work of A. Islam et 

al [11].  

   Another way IoV demarks itself from VANETs is in the sense that it aims at large coverage 

areas (city-scale or even global) and by aiming the integration of two technological visions: 

vehicle’s networking and vehicle’s intelligence, as proposed by F. Yang et al [12], with a focus 

on integrating objects (humans, vehicles, units) and environments as to build an intelligent 

network. The coalition of smart vehicular systems and cyber-physical systems brings the 

possibility of developing a global network that offers services and gives quality-of-life 

improvements to drivers and service providers, helping to reduce traffic congestion, pollution, 

and accidents. 
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   Moreover, IoV can be seen as an application of an IoT 

technology in an ITS technology, which is also the result of 

merging three different networks: the intervehicular network 

(from the vehicle to other vehicles), the intravehicular 

network (inside the vehicle – cyber-physical system) and the 

vehicular mobile Internet (from the vehicle to other objects 

on the network) [13]. It is an enormous distributed system for 

wireless communication and data exchange on a vehicle-to-

everything (V2X) mode with defined protocols and data 

interaction standards, like IEEE 802.11p. These modes are 

represented in Figure 2.1.  

2.1.2  Architecture 

   In terms of architecture, IoV can be interpreted in various ways. For example, researchers have 

divided the architecture into three [14], four [15], or even five layers [9]. Figure 2.2 presents a 

side-by-side comparison of the four aforementioned architectures. 

Three-layer architecture 

   The three-layer architecture, presented by L. Nanjie [14], is divided based on the interactions 

with the technologies in the IoV environment, as follows: 

• The sensor layer is responsible for the sensors in the vehicles and surrounding 

infrastructure. 

• The communication layer is responsible for the wireless connections between entities in 

various vehicle-to-everything (V2X)  modes (Figure 2.1). 

• The data processing layer is responsible for holding statistics tools and storage (acts as 

the intelligence of the IoV network and provides big data processing to vehicles, providing 

decision-making in risk situations).  

Four-layer architecture 

   The four-layer IoV system architecture, presented by CISCO [15], is divided as follows: 

• The end-point layer, which is responsible for the vehicles (and sensors), V2V 

communications, and software. 

• The infrastructure layer, which handles all communication technologies used by entities. 

• The operation layer, responsible for policy enforcement and flow-based management of 

network providers. 

• The service layer handles the services offered by the cloud infrastructure that are 

connected to the network.  

Five-layer architecture 

   The five-layer architecture, proposed by O. Kaiwartya et al [9], is divided as follows:  

• The perception layer handles data gathering, data digitization, and transmission, and 

energy optimization at lower layers. 

Figure 2.1 - V2X communication modes. 

In order, they are:  

• vehicle-to-vehicle (V2V),  

• vehicle-to-sensor (V2S),  

• vehicle-to-infrastructure (V2I),  

• vehicle-to-pedestrian (V2P),  

• vehicle-to-road-side-unit (V2R). 
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• The coordination layer is not only responsible for transferring data to the artificial 

intelligence layer in a secure manner, but also being responsible for dealing with the 

heterogeneity of the network structure, unifying received information. 

• The artificial intelligence layer holds the cloud infrastructure, which stores, processes, and 

analyzes the data from layers below, utilizing this analysis for decision making, while also 

managing services provided by cloud systems.  

• The application layer is responsible for providing intelligent services to end-users, based 

on the processed and analyzed information of the AI layer, that serves for service 

discovery from smart applications.  

• The business layer, a novelty from the last two architectures, which is responsible for 

giving foresight on the development of business models, based on data analysis and 

statistics, which come from the application layer and is later transformed by analysis tools, 

while utilizing decision making for budgeting and optimization usage of resources. 

Seven-layer architecture  

   The work of J. Contreras-Castillo et al [10] refers that the three and four-layered proposed 

models have weaknesses and do not contemplate important concerns of IoV systems, like the need 

for the existence of layers for security and data dissemination/transmission, the communication 

between the driver and the vehicle (interface) and network congestion. The authors then present 

a more complete layered architecture interpretation which divides the IoV into seven layers:  

• The processing layer, as the name suggests, is responsible for big data processing using 

various cloud computing technologies, which helps the development of strategies for 

business models. 

• The control and management layer manages the network service providers in IoV, 

utilizing policies and functions for that objective. 

• The communication layer is responsible for selecting the best network to serve the needs 

of the user. 

• The data filter and pre-processing layer analyzes data to avoid network congestion by the 

transmission of irrelevant information.  

• The data acquisition layer collects data from their respective sources (sensors, 

infrastructure connection points, other vehicles, etc.). 

• The user interface layer is responsible to deal with how the information is passed from the 

vehicle and sensors to the driver and users inside the car.  

• Finally, the security layer, transversal to the six ones noted before, and is one of the major 

differences between this architecture and the first two presented before, being responsible 

for all security properties guaranteed, using proposed solutions to mitigate the damage 

from cyberattacks and malfunctions.  

Comparison 

   It is possible to conclude that the four architectures share some similarities themselves. All the 

architectures have layers that are responsible for sensors, vehicles, and data collection (sensor, 

end-point, perception, and data acquisition layers). Layers that handle and manage 

communications between entities are also present in all the architectures (communication, 

infrastructure, perception and coordination, and communication layers). The data processing, 

service, artificial intelligence and application, and the processing layers are responsible for data 
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processing and decision making, among other services, usually provided by the cloud 

infrastructure. The management of network providers is only present in the four, five, and seven-

layered architectures in the operation, coordination, and control and management layers, 

respectively. Only the five and seven-layered architectures have layers that are responsible for or 

help in the development of business models: the business and processing layers, respectively. 

Finally, only the seven-layered architecture has layers that handle data pre-processing and 

security. While the five-layer architecture does not present a layer for security, they mention the 

secure transmission of information between layers and the authors mention the usage of protocols 

to ensure the secure exchange of data.  

 

 

Figure 2.2 - Comparison between the various layered architectures for IoV. 

With each new layer added, each layer’s job gets more specific or even more, objectives are purposes are added, in 

order to fulfill the needs of the network, applications, and vehicles. 

   E. Benalia et al [3] state that the three and five-layer architectures do not take into account the 

security challenges in IoV. It is possible to also add the four-layer architecture to this affirmation, 

giving our past analysis above. They further notice that even the most complete seven-layered 

architecture does not take advantage of new paradigms and technologies, like the usage of 4G/5G 

communications to deal with high latencies and low bandwidth, or the usage of paradigms like 

edge and fog computing for pre-processing and management. 

   The authors then present a three-layered generic architecture which is divided as follows:  

• The terminal layer (or IoV layer) that is responsible for gathering information on the road 

through mm-wave V2X communication modes (mm-wave, or millimeter-wave, is a new 

5G network technique that can promise multigigabit communication services [16]).  

• The edge computing layer, that has: 

o The fog infrastructure sublayer, that is responsible for data processing, analysis, 

computing storing, networking, and security.  

o The fog virtualization sublayer, which is divided in: 

▪ upper level, which has two planes that manage the network (control 

plane that manages the local and global data planes, and provides 

programmability and flexible management, and global data plane that 

contains forwarding and data processing devices).   
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▪ lower level that contains the local data plane which has nodes that 

forward and receive data to and from fog and cloud computing. 

o  The fog service sublayer that offers traditional fog services adapted to IoV, like: 

▪ Fog Vehicular Infrastructure as a Service (offers data processing, 

storage, and analysis while having the capability of adopting another 

infrastructure to serve other needs). 

▪ Fog Vehicular Platform as a Service (offers different operational 

systems and computational environments to ensure the fulfillment of the 

heterogeneous needs of drivers and vehicles). 

▪ Fog Vehicular Software as a Service (offers fog-based software which is 

divided into user applications and safety applications, which will be 

explained below).  

• The cloud computing layer, that provides services just like the latter four mentioned 

architectures: big data processing, analysis, storage, and analytics tools, which can then 

help develop business models.  

   This final layered architecture was made with the intent to allow more flexible dissemination of 

data in IoV while taking into account the advantages of new rising technologies, such as cloud 

and fog computing paradigms that increase network performance. While this architecture is the 

most complete, not every project needs the same notion of architecture to fulfill its needs, and it 

all depends on what are the required aspects that need to be considered to develop the idea and 

what each architecture layout has to offer. If the project does not or cannot envelop fog computing 

techniques, then the best architecture to follow is one of the other four. If the architecture is not a 

big factor, then the first three‐layer architecture is the best one to use as the basis for the project 

in question, aiming for simplicity. 

2.1.3  Applications 

   Applications for the IoV vary in functionality and objectives. Researchers have divided these 

applications according to the services they aim to provide and in what shape or form they provide 

them. 

Taxonomy 

   Following the work of F. Yang et al [12] and W. Wu et al [17], IoV applications can be divided 

into categories. Figure 2.3 presents the following taxonomy of IoV applications. 

   Firstly, the User or Infotainment applications, which are applications that provide value-added 

services and have multiple requirements in terms of real-timeliness or communications. These 

applications range from video/music streaming, file transfer to weather information and local 

point of interest information. The services these applications offer can also be further divided in: 

• cooperative local services – relates to infotainment from local-based services (i.e. point of 

interest notification and media downloading). 

• global internet services – relates to data obtained from services like insurance management 

and parking zone information, which are constantly updated. 
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   Some User applications that have been developed are, for example, the Cooperative Video 

Streaming over Vehicular Networks [18] that provides basic QoS over 3/3.5G networks. In this 

application, helpers (other vehicles) can voluntarily share bandwidth with requesters and improve 

QoS by transmitting video through the established dedicated short-range communications 

(DSRC) channels. 

   Next, F. Yang [12] and W. Wu [17] diverge on how they approach the taxonomy of the rest of 

the applications. While the latter has two more categories, which are Safety applications and 

Transportation efficiency applications, the former does not do this differentiation. Safety 

applications, that aim at providing services to ensure safe driving through notifications and, 

possibly, car control. Given that it is the most researched technology, Safety applications mainly 

refer to collision avoidance systems (CAS), vehicle-based systems that serve two purposes:  

• collision warning – warns the driver that a collision is about to occur, and it can also warn 

when a collision happened down the road, to prevent congestion. 

• driver assistance – controls the car for steady-state or for an emergency intervention (like 

braking before a collision). 

   CAS can be extended to cooperative collision avoidance systems (CCAS), where vehicles share 

their information with neighboring vehicles in order to diminish even more the chance of 

collisions. 

   There is also some research on speed limiting applications that prevent speeding. M. 

Abdelsalam et al [19] developed a system based on RFID technology, with RF transmitters on 

roads, RF receiver modules on vehicles, and engine control units to establish speed values. One 

of the earliest works with CCAS was CarTALK 2000 [20], which developed Cooperative 

assistance systems, information, and warning functions. 

   Finally, Transportation efficiency applications are applications that aim at improving efficiency 

for vehicles and drivers similarly, by providing solutions that improve efficiency in things like 

fuel consumption and travel time. These applications can be divided into four different categories, 

based on their main work environment and objectives: 

• intersection control – the biggest research area in efficiency solutions, as stated in both 

papers, these applications aim at controlling traffic at intersections, which requires complex 

solutions to reduce waiting time and retain fairness. They can be split into two types of 

approaches: 

o traffic-light-based - applications schedule traffic lights based on traffic volume with 

V2V (the cluster of vehicles at the intersection makes decisions) or V2I (a controller 

makes the decisions) communication approaches. 

o non-traffic-light-based – applications apply maneuver manipulation, controlled by 

the intersection controller, to drive on the intersection or vehicle scheduling 

algorithms. 

• route navigation – also known as vehicular network-based navigation, it is researched to 

avoid the negatives of using GPS-based approaches. It utilizes parameters like real-time 

traffic information, fuel consumption, speed, and road condition data, etc. to choose the best 

route for the vehicle. 
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• cooperative driving – applications that aim at coordinating a group of vehicles, so they drive 

like one. This improves energy efficiency, traffic flow, and helps prevent accidents. 

• parking navigation – applications that use algorithms in order to track optimal routes that lead 

to the closest available parking zones. 

   R. H. Huang et al [21] developed a cooperative adaptive driving application, a variation of 

cooperative adaptive cruise control, utilizing mobile edge computing and platooning techniques, 

to avoid accidents and improve traffic flow. H. Kowshik et al [22] present an algorithm for 

multiple vehicles that enforces safety in intelligent intersections through time slot allocation. W. 

Wu et al [23] developed algorithms that schedule vehicles with V2V communications, based on 

distributed mutual exclusion. P. Y. Chen et al [24] and K. Collins et al [25] present route 

navigation systems based on the vehicle’s fuel consumption and traffic congestion on roads, 

respectively. 

 

Figure 2.3 - Taxonomy of applications for the Internet of Vehicles. 

Social Internet of Vehicles 

   An evolution of the paradigm of IoV, Social Internet of Vehicles (SIoV) allows for the creation 

and management of relationships between vehicles in IoV, based on the context they are inserted, 

network architecture, or application requirements, behaving like a social network of vehicles [26]. 

These webs of relationships can introduce vehicles to other participants and enable vehicles to 

autonomously create new relationships that prove to be beneficial, be it because they improve 

traffic efficiency (like through sharing road information) or because these vehicles have data 

useful for installed applications [27]. This paradigm opens doors to new applications and can help 

the development of the applications mentioned above, given the focus on data exchange and trust 

relationships between vehicles and between infrastructural nodes. Adding to this, the usage of 

Deep Learning in the application scenario is also a possibility to get better results, as it has been 

researched and evaluated for IoT [28]. 
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2.1.4  Main challenges 

   IoV faces challenges on many fronts, especially because it is such a recent paradigm with a lack 

of research. 

Standardization 

   One of the main challenges in IoV is the need for the development of standards and protocols 

to achieve interoperability and ease the development of applications. Many consortia and 

organizations are trying to develop these standards and protocols that answer to the requirements 

posed by IoV and there are already some prominent protocols for these systems, as showcased in 

Figure 2.4. These protocols, proposed in the work of A. Al-Fuqaha et al [29], are utilized in IoT 

as well, as the two paradigms share similarities. Even so, with the imminent turn to the fifth 

generation, 5G, these protocols will probably need to be revised.  

 

Figure 2.4 - Protocols on the Internet of Vehicles. 

Most of these protocols are already existing ones that are used in almost every type of network. However, it is expected 

that different protocols are constructed just for IoV, due to the specificity of requirements. 

Resource constraints 

   While preprocessing information can lead to less network congestion and more accurate results 

in higher layers, the computing resources (computing power, energy power, storage space, etc.) 

limitations of devices in lower layers can limit the usefulness of doing it and even end up 

hindering the security aspect of the system, since the usage of cryptographic algorithms can 

become limited. The challenge here can lead both ways: make more powerful hardware or make 

algorithms for preprocessing/security that require fewer computing resources while maintaining 

the minimum levels of satisfaction for their implementation to be worth.   

Service management 

   Given the large number of services that can be provided in IoV environments, it becomes a 

challenge for vehicles to manage services to obtain optimal solutions for them at a given point in 

time, minimizing costs and delivery time.  
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Node mobility 

   In IoV environments, the nodes (vehicles) are constantly moving, as they move in the real world. 

This regular mobility and the rapid topology changes related present a challenge when trying to 

keep vehicles connected to the network and the Internet, since they lead to packet loss, link 

failures, and even frequent network disconnections. But there is a difference from IoV to regular 

networks affected by mobility: the mobility in IoV is somewhat predictable since vehicles and 

their movement are limited to road layout and topology, road signs, and other vehicles. 

Scalability 

   It is also extremely important that the IoV can have numerous amounts of devices connected at 

a given time without a significant decrease in performance, ensuring high scalability. Otherwise, 

it will not serve its purpose of achieving large-scale coverage and guaranteeing that services reach 

the users. 

Data dissemination, data routing, and data management  

   The IoV also opens doors to the integration of different services and technologies [30]. With 

the heterogeneity of entities, services, and networks in IoV environments, disseminating and 

routing data from the source to the target destination, while guaranteeing a high quality of service 

becomes difficult. These heterogeneous environments also limit the coordination and 

collaboration of different networks and subnetworks. There is also the problem of data 

management, given that the entities in IoV generate massive amounts of data, making it difficult 

to aggregate, storage, process, analyze and provide decision making over this data. The challenge 

here is to design new protocols and schemes that can ensure that not only the data reaches the 

target under certain QoS limits, but also enable cooperation between networks and ease big data 

management.  

Security 

   The tolerance to heterogeneity and interoperability in IoV systems, which is strictly needed to 

allow these thousands of different vehicles, sensors, and other components to communicate in the 

network, brings out a bigger need for data security. Zhang [4] states that vehicles operate in 

unprotected and vulnerable environments, with vulnerabilities in the cloud, V2V, and local 

communications.  The security vulnerabilities in communications in V2X modes could open the 

possibility for cyber-attacks by manipulation of data streams or connection points [10]. Another 

danger is the possibility of hacking vehicles, which could lead to accidents and fatalities. In 2015, 

hackers at the Black Hat hacking conference demonstrated how they hacked vehicles through 

their PCs, far away from the vehicle, and it should be seen as a threat to security [10]. As such, 

researchers have proposed various ideas on how to reduce these vulnerabilities, while fulfilling 

the security requirements of IoV and safeguarding the network and its participants. B. Mokhtar et 

al [31] and S. Sharma [32] have listed the security requirements for IoV, which are summarized 

in Table 2.1. 

   In SIoV, with an even bigger need for data availability, connectivity, and autonomy of vehicles, 

there is a problem in maintaining security, especially, the privacy may be compromised due to 

secondhand data sharing. The new applications can also emphasize security vulnerabilities, due 

to inherent issues in communications or no control in data usage. 
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Table 2.1 - Security requirements for IoV [31]. 

These requirements have to be met in order to protect the vehicles and other devices that proliferate IoV environments. 

Security requirement Description 

Data authentication Vehicles identities should be verified when transferring data 

Data integrity Sent and received data should be verified to ensure correct data 

transferal 

Data confidentiality Data transmission between vehicles should be secret 

Access control Vehicles should be allowed to access services they are entitled to 

Data non-repudiation Ensure vehicle should not be able to deny the authenticity of another 

vehicle 

Availability Communication between vehicles should be ensured even under bad 

conditions in the event of an attack 

Anti-jamming Malicious vehicles cannot interrupt communications between other 

vehicles 

Impersonation A vehicle cannot impersonate another entity in the network 

ID traceability A vehicle’s identity can be retrieved from sent messages 

Vehicle 

privacy/anonymity 

Sent messages can only be accessed by authorized vehicles and 

remote nodes. The vehicle's identity should be hidden. 

 Blockchain 

   Blockchain is a technology that is deeply studied by researchers given its distributed aspect, 

which allows it to be implemented over P2P overlay networks, which are common nowadays, and 

the security benefits it brings, which are mentioned below, in Section 2.2.3. 

2.2.1  Definition 

   Blockchain was firstly introduced in 2008, by Satoshi Nakamoto [5], as the technology behind 

Bitcoin, a virtual currency exchange system that uses cryptography (digital signatures) to avoid 

the implementation of trust-based models and, consequently, the requirement of a trusted third-

party participant to validate transactions. Blockchain is described as a distributed ledger/database 

of transactions that can assure various security properties by the usage of consensus protocols and 

cryptography algorithms [33].  

 

 

   Given the description presented in [34], the ledger takes the form of a distributed chain of 

blocks, as represented in Figure 2.5, where, generally, every block has the following parameters: 

• its hash, 

• the hash of the previously added block,  

• a timestamp 

• a nonce (for calculations), 

• the number of transactions, 

• a Merkel tree of past transactions. 
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   The ledger is distributed because every node in the network has knowledge of the chain of 

transactions, making them public for all, which also removes the single point of failure problem, 

which affects trust-based models with third-party authenticators. Before being added to the chain, 

a new block must be validated by the participants of the network through the usage of distributed 

consensus protocols, some of which are listed below. This, with the aid of cryptography 

algorithms and safe communication techniques, helps assure data integrity and traceability once 

a block enters the Blockchain while solving the problem of double-spending, as explained by 

Satoshi. The usage of consensus protocols removes the need for a third-party authority in 

transactions, which would reduce the system’s throughput, and makes these transactions 

automatic. 

 

Figure 2.5 - Blockchain and Merkel tree structures. 

In this case, this slice of the chain showcases three blocks, which are linked by each block saving their parent’s hash 

inside itself. 

Merkel tree 

   The Merkel tree each block has the root hash which is the hash of all transactions and each 

consequent non-leaf node is a hash of the concatenation of the two values below, forming a binary 

tree of hashed transactions. Given that transactions are hashed, any attempt at altering with 

transactions that have already been executed will result in different resulting hashes for the Merkel 

tree, allowing for easy detection of tampered transactions.  

Chain forks/discrepancies 

   On somewhat rare occasions, two blocks might be appended to the Blockchain at the same time, 

pointing to the same parent block. Blockchain systems rely on consensus mechanisms to solve 

these forks [35]. For example, in systems that use the proof-of-work consensus protocol, the 

longest chain is the one picked since it signifies a bigger investment in effort [5]. In proof-of-

stake, the chain with the most total consumed coin age is chosen [36]. 

2.2.2  Technologies 

   Blockchain utilizes various technologies to achieve its famous security and privacy properties, 

being consensus protocols and cryptography techniques the main two. 
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Cryptography 

   Each user has two keys: a public key and a private key. As stated in the work of M. A. Ferrag 

et al [37] and A. Dorri et al [38], asymmetric encryption is used for communications, where the 

public key is utilized for encrypting transactions, and the private key is utilized to decrypt the 

transactions. The private key is also used to sign transactions before sending and the receivers can 

verify this signature by using the sender’s public key. This verification is made by every node 

that receives the transaction, which then disseminates it further. When the nodes that take part in 

the transaction verify it and accept it, it is validated, placed on a timestamped block with the 

required hash of the previous block. This block is then broadcasted back to the network, verified 

by the nodes, and then added to the Blockchain. 

Consensus protocols 

   Blockchain utilizes distributed consensus protocols to validate transaction blocks before they 

are inserted into the Blockchain, which ensures data immutability. More than one consensus 

protocol can be implemented together, to fulfill application requirements. 

   The pioneer consensus protocol for Blockchain was proof-of-work [5]. In PoW, the nodes are 

tasked to solve arduous mathematical puzzles, a task also called “mining”. Once a nonce is found 

that gives the block’s hash a given format (usually hash has to start with n zero value bits), the 

node that found it broadcasts the solution to the network and when, at least, 51% (the majority) 

of the nodes verify it, it can be added to the Blockchain. The PoW computation costs, especially 

at the energy level, can difficult the implementation in new systems that rely on lightweight nodes, 

like IoV.  

   Following the work of A. Kiayias et al [36], PoS introduces a new concept of coin age, which 

is defined as currency amount times holding time. This new value can then be used by the owner 

to “pay himself”, through a special transaction called coinstake which enables the generation of a 

block for the owner, while consuming the specified coin age. The hash of the block generated 

needs to reach a certain hash target protocol, but in a limited search space (in contrast with PoW’s 

unlimited search space) greatly reducing the energy consumption and, consequently, 

Blockchain’s energy dependency. PoS also grants better block generation and transaction 

confirmation speeds, since only one block is created each cycle, with fewer nodes proposing 

blocks by round [39]. In Delegated PoS, a group of witnesses is voted by the nodes to generate 

blocks and are shuffled after a certain condition is met (be it time restrictions or blocks produced 

[40]), and are paid for each block generated. Leased PoS is an enhance of PoS to solve the  This 

is solved by having these nodes leasing their stakes to richer nodes and, when these richer nodes 

get the chance to generate a block, both get the reward [41]. 

   Another common consensus protocol is Byzantine Fault Tolerance, where nodes vote for a 

majority decision. Various implementations of BFT have been implemented, like Practical BFT 

[42]. A proposer node, which changes in round-robin order, broadcasts a pre-prepare message 

which can only be accepted by the rest of the nodes if they have not accepted one already. If the 

majority does accept, the proposer sends a prepare message. Once other nodes are prepared, the 

proposer sends a commit message to all of them and, once the message is accepted, the state of 

the Blockchain is altered in each node. PBFT adds a timeout condition to tolerate faulty primary 

nodes (proposer)[43]. There’s also a delegated BFT, where nodes are divided into two roles: 



17 

 

ordinary and bookkeepers. Ordinary nodes do not take part in deciding consensus, only choosing 

which bookkeeper nodes they back. A random bookkeeper is selected, and it broadcasts its 

transaction data to the network and, when 66% of bookkeepers accept the data as valid, it is added 

to the Blockchain [44]. The majority of BFT protocols can handle 1/3 of faulty nodes. 

   Proof-of-Activity, as described by I. Bentov et al [45], is a consensus protocol that is a hybrid 

between PoW and PoS. The protocol starts by using complex mathematical tasks (the 

pseudorandom number and the finding of the satoshi, the creation of an empty block header, and 

the derivation of pseudorandom stakeholders from a hash). When nodes have enough stake, PoS 

algorithms start to take place (nodes with more stake have higher chances of being chosen). Forks 

in the chain are dealt with just like in PoW (longest chain represents the biggest amount of effort) 

and the fees for transactions are divided by all found stakeholders. 

   Presented as an alternative to PoW and PoS [46], in the Proof-of-Burn protocol nodes are 

encouraged to spend their currency, and only then can they generate blocks and get the respective 

rewards. In Slimcoin [47], PoB is used as PoS, where the higher the amount of burned currency, 

the higher the chances of generating a block in the next round (instead of coin age). The burning 

of currency also keeps its value overall, since there is less currency after the operation, making it 

rarer. The nodes burn the currency and receive a proof-of-burn, a string that proves that the 

burning took place, that is then used to receive a given reward [48]. 

   The Proof-of-Elapsed-Time was first proposed by Intel for its Sawtooth Lake platform. In this 

protocol, each node generates a random time value that has to follow a distribution set by the 

scheme. This time represents the waiting time before the block can generate blocks and can be 

updated every time the node generates a new block. This protocol solves the energy dependency 

problem of PoW and the “one CPU one vote” problem presented by Satoshi Nakamoto [49].  

   The Proof-of-Capacity protocol is a protocol that works similarly to PoS, where the “stake” is 

the capacity, or storage space, of the hard drive of nodes. The bigger this value, the higher the 

chances of nodes get to generate blocks [50]. 

   The Proof-of-Authority protocol was originally planned for Ethereum based private networks. 

This protocol has a set number of nodes (called authorities) that achieve consensus between them 

to generate blocks requested by clients. Every time a “step” (the unit that demarks time in PoA) 

passes, a new leader is elected from the authorities [51]. This protocol works better in private and 

consortium type Blockchains where there is a known set number of nodes. 

   In the Proof-of-Importance protocol, the nodes have a ranking that grows with each successful 

validation of blocks and transactions made. Nodes with higher rankings have higher chances of 

generating blocks and, as such, the network itself has a higher trust value between nodes [52]. It 

differentiates itself from PoW and PoS because it allows smaller nodes, with fewer stakes or CPU 

power, to also participate in the network, making it so only participating nodes (the only ones 

beneficial to the network) get rewards. 

  In Proof-of-Luck, a random number is assigned to each block (its luck). Every time a node wants 

to start to generate a block, it waits a set interval of time, receiving other blocks from other nodes 

and, if during this interval the node receives a luckier block, it substitutes its own (only if the 

parent block is the same). If after that interval, his block is still the luckiest, the node broadcasts 
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his block to the network and proceeds to generate the hash of the block header for the next block 

[53]. In this protocol, forks are common and, as such, nodes verify the total luck of each chain 

and choose the one with the best total, as it represents the chain with the closest desirable behavior. 

   In the work of A. Shoker [54], the Proof-of-eXercise protocol, based on PoW, is proposed and 

tries to solve some of PoW’s problems, like Puzzle hardness, Block sensitivity, and Easy 

verification. In this protocol, nodes are challenged to solve computation-intensive problems 

(massive matrix operations), instead of solving hash-related tasks. This proves that the computing 

power of the Blockchain can also be used to solve real scientific problems, which opens doors for 

investigation. 

Smart contracts 

   Szabo N. proposed the idea of smart contracts in the 90s, defining them as a “computerized 

transaction protocol that executes the terms of a contract”. In the context of Blockchain systems, 

smart contracts can be defined as small pieces of executable software programs that execute, in 

an automatic and independent fashion, instructions, when certain previously accorded conditions 

are met [55]. These executions are accounted for as transactions for storing purposes, being 

inserted in a block, and added to Blockchain every time they are executed. Given the 

aforementioned properties of smart contracts, they offer appropriate access control and contract 

enforcement. It is also possible to conclude that these contracts are deterministic, since every 

input returns a defined output, even if the contract is called repeated times.  

   The smart contract lifecycle is composed of four phases, depicted in Figure 2.6: 

1. Creation: 

a. Negotiation of obligations, prohibitions, and rights. 

b. It is an iterative process with multiple rounds until an agreement is reached. 

2. Deployment: 

a. Deployed to platforms on top of Blockchains.  

b. Digital assets of involving parties are locked. 

c. A new contract has to be created for new changes, due to the immutability 

property of Blockchains. 

3. Execution: 

a. Automatically executed when the previously negotiated conditions are met. 

b. Resulting transactions and updates are stored in the Blockchain. 

 

 

4. Completion: 

a. Every transaction has been completed and the currency has been 

transferred/removed to/from the involving wallets. 

b. The digital assets are unlocked and available for other transactions.  
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Figure 2.6 - Smart contract lifecycle. 

2.2.3  Benefits and challenges 

Types of Blockchain 

   There are three types of Blockchains: public, private, and consortium Blockchains, which are a 

combination of the first two. 

    Public Blockchains have to be decentralized, immutable, preserve data non-repudiation, 

transparency, and traceability of transactions but have low scalability and flexibility. Public 

Blockchains do not require permission for access (permissionless), which means any node can 

enter and leave the network at any time. 

   Private Blockchains can be the opposite: centralized, mutable, do not preserve data non-

repudiation, transparency, or traceability of transactions, but have high scalability and flexibility. 

They require permissions before accessing the Blockchain (permissioned), which means nodes 

require permissions to access the network, call functions, or even see data.  

   In the middle of both, there are Consortium Blockchains. These Blockchains can be partially 

decentralized, partially immutable, partially refusable, and partially traceable while achieving 

somewhat good scalability and flexibility. They are permissioned as well.  

   The usage of these three types of Blockchain depends on where and how they are to be deployed 

and implemented in the environment. Usually, private Blockchains are used in private networks. 

Public Blockchains are the only type that has to guarantee a certain number of properties, or the 

safety is compromised, while Consortium and Private Blockchains can have any degree of any 

property, depending on what they are used for. 

 

 

Table 2.2 - Summary of comparison between types of Blockchain on various security and network parameters.  

Private Blockchains offer the possibility for the properties mentioned under it, but they can also hold the properties 

listed under public Blockchains. However, the same does not apply backwards, due to the nature of the networks each 

type of Blockchain is implemented on top of. 

Property 
Type of Blockchain 

Public Private Consortium 
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Centralization Decentralized Centralized Partially 

decentralized 

Transparency Transparent Nontransparent Partially transparent 

Traceability Traceable Traceable Partially traceable 

Mutability Immutable Mutable Partially immutable 

Data Repudiation Non-refusable Refusable Partially refusable 

Scalability Low High Good 

Flexibility Low High Good 

Permission Permissionless Permissioned Permissioned 

   Given the information above, the following is deductible: Blockchain assures Data 

authentication since every user has a pair of keys and their public key is identifiable. As such, it 

also ensures the property of Data non-repudiation, because since data is hashed with the user’s 

keys, the data is connected to that user and its actions cannot be denied. Each private and public 

key is unique and since they are used to sign block hashes and transaction records, Impersonation 

becomes almost impossible. Privacy is maintained, but not completely, by making Blockchain 

addresses anonymous (but the key management authority will always know what vehicle a key 

belongs to). Data integrity is maintained since data blocks have hashes that are calculated once 

and, if the data is tampered with, it would generate a new, different hash, which would be detected 

rapidly, as mentioned above. The properties of Data confidentiality and Access control are 

ensured by the usage of cryptography in the exchange of messages and smart contracts. Finally, 

Blockchain can also assure Availability, by allowing communication in heterogeneous 

environments, since it can be deployed in overlay P2P networks. These properties of the 

Blockchain cover most of the security requirements of IoV systems mentioned in Table 2.2.  

   While having many benefits, typical Blockchains does suffer from low throughput, specially 

PoW-based Blockchains like Ethereum [56], and the cryptographic functions can be way too 

computationally and energy-intensive for the resource-constrained devices that are now 

proliferating in new network paradigms like IoV, especially when using consensus protocols like 

PoW. There is also the debate between assuring complete privacy and anonymity or having data 

traceability, since achieving complete privacy and anonymity does not allow for the Certificate 

Authority (CA, which is the entity that assigns keys to nodes) to trace malicious transactions to 

the dishonest nodes in the network. A Public Key Infrastructure (PKI) is used by Certificate 

Authorities to achieve privacy while guaranteeing traceability, making it so there is no way that 

attackers can link public keys to real identities [35].  

2.2.4  Applications 

   There are published surveys [57][58][59] that explore how Blockchain has been implemented 

in growing systems to assure the security and privacy needs of applications for various purposes. 

  Some areas where Blockchain applications have been developed or show promising future paths 

are as follows: 

Finance 

   Blockchain started by being used for cryptocurrency exchanges over networks ever since its 

genesis in 2008. New cryptocurrencies are still being developed, but there is also an investment 
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in research for their application in banking and financial development. Q. K. Nguyen [60] stated 

that Blockchain has the potential for sustainable development of the economy and financial 

growth. 

Healthcare 

   Healthcare systems are full of very different technologies that have to work together to deliver 

the best service to users. As such, Blockchain is a great technology for guaranteeing 

interoperability in these highly heterogeneous systems [61]. There is also a research path 

involving the usage of electronic health records (EHR) and their relevance on improving health 

services responses and, consequently, their quality [62]. 

Governance 

   Blockchain can improve the management of citizen records and certification. One of the major 

research paths is e-voting. With e-voting, everyone with access to technology would be able to 

vote and engage more easily with the political life of their surroundings, without worrying about 

transportation or wasting time in lines. FollowMyVote [63] is a proposed project for e-voting with 

end-2-end communication, based on BitShares. BitCongress [64], a discontinued project, used 

Counterparty and Ethereum smart contracts to manage voters and votes. 

Business and Industry 

   In terms of Business and Industry, Blockchain brings promising implementations. Mostly 

focusing on the problem of supply chain management and energy management. For the supply 

chain, Blockchain can serve to improve characteristics like visibility, optimization, food safety, 

or even the automatization of transactions between intermediaries. Coindesk [65] is a project 

developed by IBM and Walmart to help manage China’s pork meat market, to improve safety in 

the supply chain. In the energy management path, Blockchain can allow for cost reduction and 

better planning, and improve the energy market system for costumers and providers [66]. 

Internet of Things 

   Blockchain has been adapted for various needs and various functionalities in the Internet of 

Things. Recent researches utilize the Blockchain as a middleware to ensure security and cover 

the security problems of these paradigms, creating what is referred to as the Blockchain of Things 

(BCoT) [67].  

Other relevant areas of R&D 

   Education, Security, Integrity Verification, and Data Management are also favorable areas of 

research for Blockchain implementations. The Internet of Vehicles is also a favorable research 

area for Blockchain implementations and is in the section discussed below. 

 Blockchain-based solutions on the Internet of Vehicles 

   Given the characteristics of Blockchain and the security challenges of IoV, research and 

development for implementing the former in the latter have been growing over the years. Most of 
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these implementations try to solve some security problems regarding data sharing in IoV 

networks. 

   In the work of G. Rathee et al [68], a Blockchain-based framework to provide security, safety, 

and transparency for users, and vehicles, in cab-sharing scenarios (e.g.,  Uber) is proposed. In this 

framework, smart contracts are used so information is not accessed and altered wrongly by 

unauthorized parties (i.e., secondhand data sharing). Vehicles and IoT devices need to be 

registered in the network to access its services, via logging of information in a database and the 

Blockchain for traceability. IoT devices store their activities in the Blockchain, instead of 

vehicles, to ease detection of malicious behavior while maintaining a reasonable level of 

computational and storage costs.  

   For the Blockchain, managers are elected (a primary and a secondary, which takes over in 

the case of a faulty primary) to manage the Blockchain for some time and receive registration 

requests from other nodes, be they vehicles or singular devices. There are also miner and peer 

nodes, and the former helps validate the authentication of registration requests mentioned above. 

The managers then verify the requesters’ authenticity and generate their public keys if the 

authenticity is verified. Implementing a rating-based system for providers allows users to evaluate 

which one will be chosen to give them a ride, providing a way to incentivize good behavior from 

providers. Providers can also choose which user to attend to based on multiple parameters. A 

Blockchain is maintained between the user and the provider to detect alterations of values (e.g., 

geographical position, time, route, among others). 

   The evaluation was made through a simulation in the NS2 network simulator with Blockchain 

techniques, aiming to get results under network congestion and compromised nodes, and 

comparing them with results from an already existing approach. An attacking scenario with an 

adversary model (i.e., malicious/hacked nodes present in the network) was utilized to test the 

proposed framework. Tests were made with malicious nodes passing as vehicles, IoT devices, 

and Blockchain nodes (miners and peers). The authors conclude that the proposed approach 

surpasses existing ones, with 86% success and accuracy rates, which are theorized to get higher 

with time due to the removal of ill-intended nodes. They also verify lower levels of network 

congestion with fake requests and that the possibility of attack with n compromised nodes was 

lower for the proposed approach. The altered amount of data, in the case of intruders messing 

with user’s ratings, was also lower in the proposed approach. While still having some edges that 

need polishing, the proposed approach results achieved a 79% success rate compared with the 

already existing approach. 

   X. Wang et al [69] present a new scheme for vehicle registration and authentication in IoV 

based on Blockchain technologies, like Ripple and BFT consensus protocols, and smart contracts, 

with the purpose of eradicating the impact of malicious vehicles. 

   When a new node wants to join a contract group, it applies to it and is then evaluated by each 

node of the group through gathered data on that node in the infrastructure. If more than 51% of 

the nodes accept the node’s integration, it is added to the group. Otherwise, it will be added to a 

watchlist of suspicious nodes and following applications to the contract group will be met with 

more restrictive conditions. 
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   A distributed PKI system is utilized for trusted key distribution. For authentication, the vehicle 

sends a request to RSUs with their ID and public key. The RSU encrypts this data and sends it to 

the cloud service provider that, through the usage of consensus protocols, verifies the authenticity 

of the vehicle’s identification. 

   The evaluation of this scheme was made using the Veins network simulator. The purpose was 

to simulate the average time and communication costs of the system. Veins provide a Mean 

operation that allows for checking time consumption in the various phases of authentication. The 

costliest phase was concluded to be the encryption in the key distribution center, with an average 

of 9 ms. The average time overhead for each layer was lower than 9 ms, which proves that the 

scheme can respond to requests promptly. The communication costs are, on average, 17 Kb for 

vehicle registration and 8 Kb for RSU verification, which is within the bounds of reasonability of 

technology for large-scale traffic networks. 

   J. Gao et al. [70] presented a system architecture for IoV where Blockchain, Software-

Defined Networks (SDNs), and Fog computing. Blockchain solves security issues and settles trust 

between entities without a centralized trusted authority, as explained before. SDN technologies 

separate the control and data planes in a network to reduce structural complexity making nodes 

simply transmit data. At the same time, an SDN controller manages resource allocation, mobility, 

and rule generation. The fog computing approach helps reduce handovers in the network, which 

increases performance, and the RSUs and OBUs (onboard units) that are present in these fog 

zones, are SDN-enabled which means the SDN controller also controls them. The authors also 

define RSUH (RSU hubs), which manages the control overhead between the controller and RSUs. 

A reputation-based trust system was implemented between vehicles to detect falsified information 

and help vehicles transmit only useful information while reducing the impact of attackers. 

The evaluation was made with MATLAB combined with the NS-3 network simulator, using 

Hyperledger Fabric as the Blockchain platform, and the nodes were virtual machines deployed in 

Ubuntu containers. The two metrics that were taken into consideration for measurements were 

Packet Delivery Ratio and Transmission Delay. The former metric showed to be influenced by 

distance (optimal results were between 200 m and 500 m, due to route discovery and an increase 

in hops), the propagation model is chosen, the number of packets sent (i.e., more packets meant 

more collisions and a lower ratio), the number of vehicles and their speed (i.e., dense networks 

cause packet loss and a lower ratio). The Transmission Delay was influenced by distance (optimal 

results between 200 m and 500 m, due to MAC and the number of hops to the destination), the 

number of packets (i.e., the higher the number, the higher the contention and, consequently, the 

interference between nodes) and the density of vehicles in the network (i.e., more vehicles leads 

to more congestion). Due to these results, it was deemed to be a viable solution to Blockchain-

enabled IoV communication and trust problems. 

   M. Kamal et al [71] tackle the computation and energy power consumption in IoV during 

communications. They present changes to already existing protocols and software with no 

additional hardware requirements. The authors then propose low complexity solutions for 

operations like connectivity check, Blockchain development, and data provenance and forensics, 

including lightweight algorithms. 

   The experiments were made with three MICAz motes [72], a wireless measurement system, 

each placed in a different car. The results obtained were then transferred to MATLAB to produce 
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a simulation. The Received Signal Strength Indicator (RSSI) was measured to check the 

performance of the solution. Tests were made for Adversary Detection: first without an adversary 

(with and without a filter applied to the results) and then with an adversary (man-in-the-middle), 

and the Pearson Correlation Coefficient was calculated to check for value correlations (-1 for 

anticorrelation and 1 for high correlation). The filter test showed smoother results and value 

changes than the unfiltered one, with a high correlation in both cases (0,9754 and 0,9349, 

respectively). With the man-in-the-middle attack, the results were disparate and presented close 

to no correlation (0,1282). Tests were also made for multimedia sharing, which proved to be able 

to detect forged images by hash comparison. The Blockchain itself, due to its immutable property 

and how the block structure works, also serves to detect tampering and malicious activity to data 

(as explained before). In terms of time complexity, it was calculated by increasing the size of the 

link fingerprint (the binary version of the RSSI). From 30 to 3840 bytes, the time complexity was 

O(1), the lowest in cryptographic-based solutions. After 3840 bytes of size, the complexity turned 

to O(2n), which would never happen in ideal situations. As such, it is concluded that data sharing 

and authentication can be achieved with lightweight encoding mechanisms and procedures. 

   Table 2.3 summarizes and compares Blockchain solutions based on their motivation, what is 

proposed, and the evaluation tools used. 

Table 2.3 - Comparison of Blockchain solutions based on the motivation behind the work, what is proposed and the 

evaluation tools utilized for the evaluation. 

Blockchain  

Solution 
Motivation 

Proposed  

Solution 

Evaluation  

Tools 

Rathee et al. 

[68] 

Ensure security, safety, 

and transparency 

Blockchain framework with smart 

contracts 

NS-2, Blockchain 

platform not 

specified 

Wang et al. 

[69] 

Reduce the impact  

of malicious nodes 

efficiently 

Authentication and registration scheme Veins 

Gao et al. [70] 
Increase performance with 

new paradigms 

Blockchain-SDN-enabled solution with 

fog computing 

MATLAB, NS-3, 

and Hyperledger 

Fabric 

Kamal et al. 

[71] 

Decrease power 

consumption 

Various (lightweight algorithms, lesser 

complexity) 

MICAz motes and 

MATLAB 

 Tools 

   Various tools are used to simulate and evaluate Blockchain solutions in IoV networks. On the 

one hand, there are network simulators that allow for network construction and protocol 

integration based on development requirements. On the other hand, there are Blockchain 

platforms that provide support for Blockchain functions in the desired network environment. Most 

of the time, these technologies are used together to run a Blockchain system on nodes of a 

simulated network to get results that resemble more closely the results that would be obtained in 

real-life scenarios. 
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2.4.1  Network simulators 

   Network simulators provide various properties and support for various types of networks. Given 

that the survey focuses on IoV, only simulators that support vehicular networks are considered 

for this work. 

MATLAB 

   MATLAB was not made to be a network simulator specifically, but it is possible to simulate 

generic networks with it and Simulink. It has a VANET Toolbox [73] for vehicular network 

simulations, including support for V2V communication, but lacks development for V2I 

communications. MATLAB also offers 5G, LTE, and WLAN Toolboxes [74] [75] [76] for 

support of 5G, LTE, and WLAN technologies. Many other Toolboxes serve other purposes or 

support other technologies. The MATLAB community also has developed simulation software 

that is available for download. Even so, MATLAB is still used with other simulators to achieve 

better data visualization of simulation results. 

NS-2 [77] 

   NS-2 is a generic discrete-event network simulator that supports simulation of TCP, routing, 

and multicast protocols over wired and wireless (local and satellite) networks, mobile network 

simulations with node movement, protocols, and traffic connection. NS-2 has an extensive manual 

with information on topics like Routing, Packet forwarding, Applications, and Transport in the 

network. It also provides help for installation and application. Nam (Network Animator) is a tool 

that can be used for network visualization (including network topology and packet-level 

animation) with data from NS-2. A negative side of NS-2 is that, as mentioned by the authors, it 

can have bugs that affect results (some unreliability). 

NS-3 [78] 

   NS-3 is a generic discrete-event network simulator that is well documented, easy to use, and 

debug, caters to the needs of the entire simulation workflow, from simulation configuration to 

trace collection and analysis. It supports real-time scheduling and network simulations, and as 

such real-world protocol implementation, and simulation for IP and non-IP-based networks. 

NCTUns [79] 

   NCTUns is a high-fidelity and extensible generic network simulator that supports distributed 

simulation of large networks over multiple machines. Has support for various protocols (WiMAX, 

TCP, UDP, 802.11p, etc.) and types of networks, including support for ITS (V2V and V2I 

communications). NCTUns is an open-source and open system architecture, which enables the 

implementation of new protocols. 

Veins [80] 

   Veins is a discrete-event vehicular network simulator based on OMNet++ [81], a discrete-event 

simulation platform, and SUMO [82], a mobility simulator. Veins is open source, which allows 

for customization of protocols by developers. It features support for various technologies 

according to IEEE standards, including 5G, model implementation from MATLAB, and human-

driven or autonomous vehicle mobility simulations. 
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Summary 

   All the network simulators mentioned above support various network technologies and 

protocols that are valuable for research and development. While MATLAB is not a network 

simulator, serving best for data visualization and data management after the simulation is 

concluded, it can still be used as a generic network simulator with Simulink. MATLAB providing 

multiple pre-existing algorithms that can be deployed in the graphical environment of Simulink. 

It also allows for the input of datasets to fuel the simulations while providing the data visualization 

functions it is known for. Ultimately, MATLAB and Simulink can be used as a vehicular network 

simulator with the usage of the available toolboxes mentioned above that offer various 

technologies that are common on vehicular network simulations. These features distinguish the 

MATLAB+Simulink simulator from other generic and vehicular ones. 

   NS-2 and NS-3 share similarities, with NS-3 being a bit newer, while NS-2 has the downside 

of unreliability from bugs even though it does have more thorough documentation, but both are 

popular network simulators. NCTUns’ author states that it was built with a new methodology 

(kernel re-entering), which gives it an advantage against other regular simulators (like NS-2), 

which eases the simulator consumption of CPU. Finally, Veins is specifically a vehicular network 

simulator, focusing solely on vehicular nodes and road infrastructure and technology, and this 

makes it the most recommended for simulating IoV networks since simulating node mobility in 

generic simulators, like the other mentioned above, can be troublesome. 

2.4.2  Blockchain platforms 

   Many Blockchain platforms exist on the market for various purposes and needs. Most of them 

are community-developed platforms and, hence, open-source. 

Hyperledger 

   Hyperledger provides several Distributed Ledger Technologies for various enterprise business 

applications. These technologies were built to be integrable with each other, for mutual benefits.  

    Hyperledger Besu [83] is an Ethereum client made to interact with public Ethereum networks 

and private networks, that runs on an EVM. Even so, it has the proper permission schemes for 

consortium networks. Besu offers the possibility for the utilization of PoW, PoA, and IBFT 

consensus protocols, and it is programmed in Java. Through the integration of tools like Truffle, 

Remix, and web3j, Besu offers the means for smart contract and dapps development. However, 

Besu does not provide support for key management (creation, attribution, authentication), relying 

on a third-party key management tool, like EthSigner. 

   Hyperledger Burrow [84] is a Blockchain node and smart contract execution engine, that runs 

on an EVM, and is optimized for public networks, but can also work in permissioned (private or 

consortium) networks. Burrow is developed in Go and offers consensus through BFT with the 

Tendermint algorithm. It was made to make Blockchain implementation simple, light, and fast. 

Burrow provides developers with bare-metal implementation, instead of virtualization 

(containers). Smart contracts in Burrow are On-Chain and are written in the native language. It 

trades configurability and modularity with tight coupling of components, which removes the need 

to care about the underlying infrastructure. 
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   Hyperledger Fabric [85] is a framework, developed in Go, for private permissioned networks. 

It is highly modular, configurable, and pluggable, giving the developers the freedom to choose 

what technologies to implement and how to implement them (e.g.,  consensus protocols). Even 

so, generic Fabric works with PoS, but it can be changed to any intended one. Smart contracts are 

installed in the nodes and are developed in Golang prior to version 1.0, inclusive, or in Javascript 

from version 1.1 forward, and run in container environments. That said, a new approach to how 

the execution of smart contracts is verified by peer nodes removes the worry of non-determinism 

since deviant results are filtered before consensus, which allows Smart contracts to be written in 

standard programming languages and executed in a parallel fashion. Finally, Fabric doesn’t 

require the implementation of a cryptocurrency for consensus.  

   Hyperledger Iroha [86] is a simple Blockchain framework, written in C++, for private 

permissioned networks, that is made to help and ease application development with a variety of 

libraries, offering a lower complexity and easier management solution, with verifiable data 

consistency at low costs (with no mining, since it does not have a cryptocurrency) of Blockchain. 

It uses the high-performance YAC consensus protocol and provides built-in smart contracts 

(commands), which are On-Chain. Iroha presents robust permission and role-based access control 

over the nodes and the network. 

   Hyperledger Sawtooth [87] is a highly modular and configurable Blockchain framework for 

private networks that offers an easy environment for application developers by allowing them to 

program in any language. Contract abstraction allows developers to write contract logic in the 

language of their choice through SDK transaction processors. Sawtooth offers Raft, PBFT, and 

PoET as options for consensus protocols and a novelty is the fact that these consensus protocols 

can change during runtime, to cater to the needs of the users. In Sawtooth’s architecture, there is 

only one node type, which eases development, simplifying interactions. 

Ethereum [88][89] 

   Ethereum is a simple, highly modular, and programmable Blockchain platform made for public 

permissionless networks. It introduced the Ethereum VM, a Turing-complete machine, which is 

used by other Blockchain platforms (like Hyperledger). It was intended for digital currency 

payments and transactions with the need for third-party authority, with its digital currency unit 

being called Ether, but it can also be used for any other case of data exchange over a network. 

Ethereum works with PoW as a consensus protocol, but it is now in the midst of changing to PoS, 

due to PoW's high computational costs and energy consumption. It introduced fees or “gas” as a 

heuristic for miners, to choose transactions from the transaction pool, and users, to prevent 

infinite-loop attacks. Smart contracts for Ethereum are mostly written in Solidity (Serpent and 

LLL can also be used for writing contract logic). 

Corda [90] 

   Corda is an open-source Blockchain platform for private networks, developed in Java. Corda 

differs from other Blockchain platforms in the fact that each of the nodes does not hold a copy of 

a universal Blockchain, but only a ledger of the transactions in which they took part. 

Communications between nodes are point-to-point and there are no message broadcasts about 

transactions. Each node in Corda is a Java VM environment with Corda services or CorDapps. 

Smart contracts are written in Java. Contracts can only verify internal validity and Corda 
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implements Oracles that verify external data, when required, for transactions and contracts. Since 

there is no broadcast, Notary clusters are used for uniqueness consensus, to prevent double-

spending of currency and validate transactions. Finally, consensus protocols for Corda are 

completely pluggable, giving the developers the freedom to choose the one that fits the best. 

Tezos [91] 

   Tezos is an open-source platform for assets and dapps development in public networks. Tezos 

differentiates itself from other platforms by introducing self-amendment and on-chain 

governance, which allows for self-upgrades of the platform during runtime without heavy forks, 

which can lead to security leaks. Smart contracts in Tezos can be written in various high-level 

languages, but are always compiled to Michelson, which helps reduce the risk of smart contract 

exploits. Finally, in Tezos, the consensus is achieved through a delegated PoS protocol. 

   Table 2.4 presents a comparison of Blockchain platforms based on network types, consensus 

protocols, programming language, and smart contract languages. 

Table 2.4 - Blockchain platform comparison based on the network types they are integrated onto, the consensus 

protocols utilized, the base programming language and the programming language used to create and run smart 

contracts. 

Blockchain 

Platform 

Type of 

 Networks 

Consensus 

Protocol 

Programming 

Language 

Smart Contract 

Language 

Hyperledger 

Besu 

 Public (Ethereum) and  

 private networks 
 PoW, PoA, IBFT  Java 

 Truffle, Remix,  

 web3j (Tools) 

Hyperledger 

Burrow 
 All (public optimal) 

 BFT (Tendermint  

 algorithm) 
 Go  Various 

Hyperledger 

Fabric 
 Private 

 Various  

 (pluggable) 
 Go 

 Golang (<1.0)/ 

 Javascript (>1.1) 

Hyperledger 

Iroha 
 Private  YAC  C++  Various 

Hyperledger 

Sawtooth 
 Private 

 Raft, PBFT, 

 PoET 
 Various  Various 

Ethereum  Public  PoW, PoS (2.0)  Various 
 Solidity, Serpent,  

 LLL 

Corda  Private 
 Various  

 (pluggable) 
 Java  Java 

Tezos  Public  PoS (delegated)  Various 
 Various  

 (Michelson) 

2.4.3  Discussion 

   Given the proposed work, a Blockchain platform that allows the integration of self-made 

consensus protocols is required since the implemented cryptographic alternatives have to be 

integrated as alternatives to already existing protocols. As such, platforms like Hyperledger and 

Ethereum are the most suitable for this work since they offer the pluggable consensus property, 

which allows developers to integrate their protocols into the platform and also work with PoW 

based consensus. Since Hyperledger’s is made for private networks and its consensus protocol is 

based on a Raft protocol that works apart from the nodes, Ethereum is the most favorable choice 

of Blockchain platform, not only because it is made for public networks, but also because it is 
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possible to compare the proposed approaches to an already existing and functioning PoW-based 

consensus protocol, Ethash [92]. 

   In terms of network simulators, NS-3 and Veins have both been reported to be compatible with 

Hyperledger and Ethereum. Veins is a simulator exclusive to vehicular networks, while NS-3 is 

much more generic, which places Veins at an advantage for evaluation since it focuses on 

simulating the needed IoV scenario and nothing more. 

 Criptographic primitives 

   Devices in IoV networks are usually small and cheap and, as such, have constraints in terms of 

computational power and energy capacity. Given these characteristics and aiming at maximizing 

the lifespan of these devices, implemented algorithms and programs avoid high complexity, to 

avoid low throughput and fast battery drainage. 

   Blockchain consensus algorithms propose hard-to-solve puzzles that require high computational 

power and energy, which clashes against the resource constraints of IoV devices. As such, 

research on lightweight consensus protocols for Blockchain is a growing topic. 

   As such, this section explores new approaches to possible Proof-of-Work mechanisms that can 

replace the resource-heavy algorithms that exist at the moment. 

   P. Golle et al [94] introduce new cryptographic primitives using heuristic constructions like 

CBC-RSA, Two-root RSA, and assumptions such as n-Power Computational Diffie-Hellman or 

n-Power Decisional Diffie-Hellman.  

   The work proposes two Communication Enforcing Schemes (CES): CBC-RSA and Two-root 

RSA. CBC-RSA scheme applies RSA signatures to messages and, to reduce the size of the output 

result, CBC-chains the hashed messages and the signature of this scheme is equal to the signature 

of the last block. However, this requires high computational power in the case of heavy files since 

it could require thousands of RSA operations to hash them. 

   Two-root RSA scheme searches for two roots (𝑥, 𝑦 ∈  ℤ𝑁, with 𝑁 being a product of two primes 

and 𝑥 –  𝑦 is coprime with 𝑁) of a random polynomial function, based on the hashed values of the 

original message, which are the signature of the message. Since there’s a 1/9 and 1/4 probability 

of finding the roots, it takes between 4 to 9 attempts before finding the two roots. 

   On the Storage Enforcing Scheme (SES),  there’s a verifier 𝑉, a prover 𝑃, and a message source 

𝑆. Given a group 𝐺 with prime order 𝑝 and generator 𝑔, the n-Power Decisional Diffie-Hellman 

(n-PDDH) assumption states that no polynomial-time algorithms can differentiate between the 

following two distributions on a random guess: 

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃𝑛: (𝑔𝑥 , 𝑔𝑥2
, 𝑔𝑥3

, … , 𝑔𝑥𝑛
), 𝑤ℎ𝑒𝑟𝑒 𝑥 

𝑅
← ℤ𝑝, (2.1) 

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑅𝑛: (𝑔1,  𝑔2, … , 𝑔𝑛), 𝑤ℎ𝑒𝑟𝑒 𝑔1,  𝑔2, … , 𝑔𝑛   
𝑅
←  𝐺. (2.2) 
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   The n-Power Computational Diffie-Hellman (n-PCDH) assumption states that no polynomial-

time algorithm can compute 𝑔𝑥𝑛
 given 𝑔𝑥 , 𝑔𝑥2

, 𝑔𝑥3
, … , 𝑔𝑥𝑛−1

.  

   The designed scheme limits the size of messages to 𝑚 blocks, where blocks are part of ℤ𝑝. 

With 𝑛 =  2𝑚 +  1 and assuming n-PDDH holds in 𝐺: the verifier 𝑉 gets a private key 𝑥 from 

ℤ𝑝 and the corresponding public key is: 

𝑃𝐾 =  (𝑔𝑥 ,  𝑔𝑥2
,  𝑔𝑥3

, … ,  𝑔𝑥𝑛
)  =  (𝑔1,  𝑔2, … , 𝑔𝑛) (2.3) 

   Through the DH assumptions, V can prove that the key is correct by having P compute a DH-

tuple of values. S then divides the message into m blocks and places them in a tuple, where it 

appends a random element to the tuple from ℤ𝑝 (𝑀𝑚+1). 𝑆 then computes 𝑓0  = ∏ 𝑔𝑚+1
𝑖=1 i

Mi and 

sends the result to 𝑉. 

   These algorithms can be integrated into PoW-based protocols as a substitute for the puzzle, for 

a lightweight procedure that offers similar security results. 
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Capítulo 3 Design and Implementation 

   This work revolved around the development and implementation of two lightweight and 

mathematically proven communication enforcing schemes, built with cryptographic primitives. 

These schemes require some computational power to find a given solution to a problem, but 

without the heavy computations required by regular Proof-of-Work protocols, like the one used 

on Bitcoin or Ethereum 1.0. 

   This way, the solutions explored in this chapter are expected to be viable replacements to the 

algorithms used in consensus protocols on the Blockchain platforms that still use Proof-of-Work-

based mechanisms, in order to ease their implementations of applications on IoV networks 

without developers having to worry with resource constraints. 

   The chapter starts by defining the design of the base cryptographic schemes, followed by the 

their implementation on Ethereum and the definition of the network architecture in an IoV 

scenario. 

 Design of schemes 

   Following the published work of P. Golle et al [94], the two proposed communication enforcing 

schemes (CES), CBC-RSA and Two-root RSA can be used to enforce linear lower-grounds for 

communication and/or storage resources, helping prevent the “free rider” problem that affects 

P2P networks, where nodes act selfishly and do not help maintain the network by actively working 

on it.  

   Theoretically, CES schemes, while working just like any other digital signature protocol, ensure 

that a signer can only sign a message after exchanging at least as much data with the source of 

the message as would be required to send the message. This is enforced because a signer has to 

allow the source to either sign the message on its behalf or engage in a communication process 

with the same complexity of the message that is being transmitted. 

   The authors define a CES scheme as a triple of probabilistic polynomial-time algorithms: 

• A key-generation algorithm 𝐺 which outputs a private/public key pair (𝑑, 𝑒) for every 

security parameter 𝑘; 

• A signing algorithm 𝑆𝑖𝑔 which given a message 𝑀 and a private key 𝑑 computes a 

signature 

𝑠𝑖𝑔 =  𝑆𝑖𝑔(𝑀, 𝑑) (3.4) 
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• A verification algorithm 𝑉𝑒𝑟 s.t. if  

(𝑒, 𝑑)  =  𝐺(𝑘) ˄ 𝑠𝑖𝑔 =  𝑆𝑖𝑔(𝑀, 𝑑)  ⟹  𝑉𝑒𝑟(𝑀, 𝑠𝑖𝑔, 𝑒)  =  1 (3.5) 

such that for every probabilistic polynomial-time interactive algorithms of a signer 𝑃 and a 

message source 𝑆, 

• If for every private key 𝑑 and message 𝑀, the protocol (𝑆(𝑀), 𝑃(𝑑)) outputs a signature 

𝑠𝑖𝑔 (3.4), 

• and if, after a repeated interaction with 𝑃 on polynomial-many messages 𝑀1, … , 𝑀𝑛 of its 

choice, 𝑆 cannot forge a signature on some 𝑀 ≠ 𝑀1, … , 𝑀𝑛, except for probability 

negligible in 𝑘 

• then the communication complexity of the (𝑃(𝑀), 𝑆(𝑑)) protocol for messages 𝑀 ∈

 {0;  1}𝑛 is at least n. 

   Each transmitted message can be divided into n-blocks of equal size, to sign and create the final 

hash. 

3.1.1  CBC-RSA definition 

   The algorithm applies Cypher-block chaining (CBC) with  RSA keys, to preserve the size of 

the cipher, instead of having it grow with each new cryptographic cycle. Given a message 𝑀 

divided into 𝑛 blocks, a private/public key pair (𝑑, 𝑒), a product of two primes 𝑁 and a hash 

function 𝐻, the CBC-RSA signature algorithm develops as follows: 

1. Calculate 𝐶1: 

𝐶1 =  𝐻(𝑀1)𝑑  𝑚𝑜𝑑 𝑁 (3.6) 

2. Calculate 𝐶𝑖: 

𝐶𝑖 = (𝐶𝑖−1  ⊕  𝐻(𝑀𝑖)𝑑  𝑚𝑜𝑑 𝑁, 𝑤𝑖𝑡ℎ 𝑖 =  2, … , 𝑛 (3.7) 

3. The resulting 𝐶𝑛 is the CES signature.  

   And the verification algorithm goes backward by decrypting the signature with the public key: 

1. Calculate each 𝐶𝑖−1, where: 

𝐶𝑖−1 =  (𝐶𝑖
𝑒 𝑚𝑜𝑑 𝑁)  ⊕ 𝐻(𝑀𝑖), 𝑤𝑖𝑡ℎ 𝑖 =  𝑛, … , 2 (3.8) 

2. When 𝐶1 is obtained, compare: 

𝐶1
𝑒 𝑚𝑜𝑑 𝑁 =  𝐻(𝑀1) (3.9) 

3.1.2  Two-root RSA definition 

   The algorithm uses the received message to create an n-degree polynomial function and finds 

two distinct roots for the generated problem, which are used later for verification purposes. Given 



33 

 

a message 𝑀 divided into 𝑛 blocks, a product of two primes 𝑁 =  𝑝𝑞 and a full-domain length-

preserving collision-resistant function 𝐻, the Two root RSA signature algorithm is structured as 

follows: 

1. Choose a random vector 𝐼𝑉, such that: 

𝐼𝑉 
𝑅
← ℤ𝑁

∗  (3.10) 

2. Compute 𝐶, where: 

𝐶 =  𝐻(𝑀1, 𝐻(𝑀2, … 𝐻(𝑀𝑛, 𝐻(𝐼𝑉, 0)) … ) (3.11) 

3. Compute 𝐶𝑖, where:  

𝐶𝑖  =  𝐻(𝐶, 𝑀𝑖+1) 0 ≤  𝑖 ˂ 𝑛 (3.12) 

4. Define 𝑃(𝑥) as: 

𝑃(𝑥)  =  𝑥𝑛  +  𝐶𝑖 𝑥𝑛−1  + … + 𝐶1𝑥 + 𝐶0 (3.13) 

5. Find two distinct roots 𝑡1,  𝑡2  ∈  ℤ𝑝, and two distinct roots 𝑠1, 𝑠2  ∈  ℤ𝑞 𝑜𝑓 𝑃(𝑥) 

6. Find 𝑥1, 𝑥2  ∈  ℤ𝑁 satisfying: 

𝑥1 ≡ 𝑡1 (𝑚𝑜𝑑 𝑝) ˄ 𝑥1 ≡ 𝑠1 (𝑚𝑜𝑑 𝑞) (3.14) 

𝑥2 ≡  𝑡2(𝑚𝑜𝑑 𝑝) ˄ 𝑥2 ≡ 𝑠2 (𝑚𝑜𝑑 𝑞) (3.15) 

7. Return the CES signature < 𝐼𝑉, 𝑥1, 𝑥2 >. 

   And the verification algorithm does the same, except for the process of finding roots, only 

building the polynomial function to test the roots as zeroes: 

1. Compute 𝐶, 𝐶1, … , 𝐶𝑛−1, and 𝑃(𝑥) from 𝑀. 

2. Signature is accepted if  

𝑃(𝑥1)  =  0 ˄ 𝑃(𝑥2)  =  0 (4.16) 

 Implementation 

   These algorithms were implemented with Golang [95], a very recent programming language 

developed by Google, and the core language of Ethereum and Hyperledger. They are two of the 

biggest developer-friendly Blockchain platforms that have seen usage outside of the economic 

and cryptocurrency transaction environment. While it was rather easy to learn the language, it 

lacked some of the necessary functions and there is not much discussion about the language on 

online forums. 

3.2.1  CBC-RSA implementation 

   Algorithm 1 and Algorithm 2, showcased below, provide pseudo-code implementations of the 

CBC-RSA algorithm, according to the reasoning provided in the paper. 
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Algorithm 1: Generation of a signature based on the described CBC-RSA scheme. 

Input: Message m 

Output: Signature s 

 

1. blocks := divideMessage(m) 

2. //equation (3.6) 

3. encrypted := encryptRSA(hash(blocks[0])) 

4. //equation (3.7) 

5. for i = 1 to blocks.length: 

6. |   h := hash(blocks[i]) 

7. |   x := xor(encrypted, h) 

8. ˪   encrypted := encryptRSA(x) 

9.  

10. return encrypted 

 

Algorithm 2: Verification of a previously generated CBC-RSA signature. 

Input: Signature s, Message m 

Output: True if verification finds the signature uncorrupted, false otherwise 

 

1. blocks := divideMessage(m) 

2. //equation (3.8) 

3. for i = blocks.length-1 to 1: 

4. |   c := decryptRSA(s) 

5. |   h := hash(blocks[i]) 

6. ˪   s := xor(c, h) 

7. //equation (3.9) 

8. c1 := decryptRSA(s) 

9. hm1 := hash(blocks[0]) 

10.  

11. return compare(c1, hm1) 

Golang implementation 

   Signature algorithm: 

func cbcrsa(byteMessages [][]byte) []byte { 

    var hash = sha256.New() 

    var encryptedValues = make([][]byte, len(byteMessages)) 

    //equation(3.6) 

    hash.Write(byteMessages[0]) 

    h := hash.Sum(nil) 

    encryptedValues[0] = encrypt(new(big.Int), 

                                     new(big.Int).SetBytes(h)).Bytes() 

    hash.Reset() 

 

    return cbcChain(encryptedValues, byteMessages, hash) 

} 
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func cbcChain(encryptedValues [][]byte, values [][]byte, hash hash.Has

h) []byte { 

    var x = encryptedValues[0] 

    //equation (3.7) 

    for i := 1; i < len(values); i++ { 

        hash.Write(values[i]) 

        xor := XOR(encryptedValues[i-1], hash.Sum(nil)) 

        hash.Reset() 

        x = encrypt(new(big.Int), new(big.Int).SetBytes(xor)).Bytes() 

        encryptedValues[i] = x 

    } 

 

    return x 

} 

   The cbcrsa function receives the message divided into blocks, which in turn are arrays of bytes. 

With those blocks, this function creates C1 with the first block, as specified in equation (4.6). After 

that, it proceeds to CB-chain the rest of the blocks with the first, to create the signature, according 

to equation (4.7). It cycles all the blocks and, in each cycle, hashes the value, applies XOR with 

the last hashed value, encrypts it with the RSA private key, and repeats the cycle to the next 

message block. In the end, it returns the final signature, which is the hash for the Blockchain 

block. In these algorithms, SHA256 is used to hash the blocks, since the block hash size for 

Ethereum is, usually, 32 bytes (i.e., 256 bits). 

   Verification algorithm: 

func verifyCBCRSA(hashedValue []byte, messages [][]byte) bool { 

    var x = hashedValue 

    var hash = sha256.New() 

 

    for i := 0; i < len(messages)-1; i++ { 

        x = decrypt(new(big.Int), new(big.Int).SetBytes(x)).Bytes() 

        hash.Write(messages[len(messages)-(i+1)]) 

        x = XOR(x, hash.Sum(nil)) 

        hash.Reset() 

    } 

 

    cmp := decrypt(new(big.Int), new(big.Int).SetBytes(x)).Bytes() 

    hash.Write(messages[0]) 

    h := hash.Sum(nil) 

    hash.Reset() 

 

    return bytes.Compare(cmp, h) == 0 

} 

 

   To verify the signature the verification algorithm requires the signature and the original 

message, divided in the same number of blocks as when it was used to create the signature. With 

the public key of the signer, the verification process starts by decrypting the signature, hashing 
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the corresponding message to that segment, and applying an XOR operation between the 

decrypted data and that hashed message, to obtain the previous encrypted segment. This is 

repeated until it reaches C1, where it decrypts it and compares the final result with the first 

message, hashed. 

   The encrypt and decrypt functions use the public and private keys of the miner to get the hashed 

data as follows: 

func encrypt(c *big.Int, m *big.Int) *big.Int { 

    c.Exp(m, privateKey.D, publicKey.N) 

    return c 

} 

 

func decrypt(c *big.Int, m *big.Int) *big.Int { 

    e := big.NewInt(int64(publicKey.E)) 

    c.Exp(m, e, publicKey.N) 

    return c 

} 

Problems and limitations 

   When working with the Golang programming language, Cipher-block chaining (CBC) 

algorithms can only be utilized with AES cipher keys, invoking the need to create a personal 

version of CBC that worked with RSA keys. This CBC mechanism was implemented by applying 

an XOR operation between the new hashed value and what had been hashed before, as seen in 

line 7 of both Algorithm 1 and Algorithm 2. 

   In the implementation, the algorithm was written exactly as described by the authors of the 

paper, without any more incidents or missing base code. However during the verification of the 

output, following the proposed verification algorithm and without any change to the original data 

or the signature, the decryption would output a value that was different from expected, at random. 

This only happened when the message was divided into more than 2 blocks and never for 2 or 

less. As such, the message was limited to a 2-block division, to test the algorithm without issue. 

This choice, however, still allows for a measure of the performance of the algorithm, but there 

were no tests on the influence of larger blocks of data on this division. 

3.2.2  Two-root RSA implementation 

   Algorithm 3 and Algorithm 4 present the pseudo-code implementations of the algorithms for 

signing and verifying messages, respectively, with Two-root RSA. 

Algorithm 3: Generation of a signature based on the described Two-root RSA scheme. 

Input: Message m 

Output: Signature <IV, zero1, zero2> 

 

1. blocks := divideMessage(m) 

2. while(true): 

3. |   iv := randomVector() //equation (3.10) 
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4. |   b := append(blocks, iv) 

5. |   c := hash(b) //equation (3.11) 

6. |   coeff := [] 

7. |   //equation (3.12) 

8. |   for i = 0 to blocks.length:  

9. |   |   x := xor(c, blocks[i]) 

10. |   |   h := hash(x) 

11. |   ˪   coeff[i] := float(h) 

12. |   coeff := coeff.append(1.0) 

13. |   //verify if b2-4ac > 0, which is when it has 2 roots 

14. |   if(discriminant(coeff) > 0): 

15. |   |   zeroes := quadraticFormula(coeff) 

16. |   |   if(compare(zeroes[0], zeroes[1]) != 0): 

17. ˪   ˪   ˪   return iv, zeroes 

 

Algorithm 4: Verification of a previously generated Two-root RSA signature. 

Input: InitialVector IV, Float zero1, Float zero2, Message m 

Output: True if verification finds that the zeroes are still the solution to the polynomial function, 

false otherwise 

 

1. blocks := divideMessage(m) 

2. b := append(blocks, iv) 

3. c := hash(b) 

4. coeff := [] 

5.  

6. for i = 0 to blocks.length: 

7. |   x := xor(c, blocks[i]) 

8. |   h := hash(x) 

9. ˪   coeff[i] := float(h) 

10.  

11. coeff := coeff.append(1.0) 

12. return isRoot(coeff, zero1) and isRoot(coeff, zero2) 

Golang implementation 

   Signature algorithm: 

func tworootrsa(byteMessages [][]byte) ([]byte, []*big.Float) { 

    var zeroes []*big.Float 

    var initV []byte 

    var hash = sha256.New() 

 

    for len(zeroes) < 2 { 

        initV = make([]byte, len(byteMessages[0])) 

        //equation (3.10) 

        inte, _ := rand.Int(rand.Reader, publicKey.N) 

        initV = inte.Bytes() 



38 

 

        byteMessagesWIV := append(byteMessages, initV) 

        //equation (3.11) 

        result := hashStrings(byteMessagesWIV, hash) 

        coefficients := make([]*big.Float, len(byteMessages)+1) 

        //equation (3.12) 

        for i := 0; i < len(byteMessages); i++ { 

            hash.Write(bitwiseOperation(byteMessages[i], result))//XOR 

            x := hash.Sum(nil) 

            hash.Reset() 

            coefficients[i] = new(big.Float).SetInt(big 

                           .NewInt(int64(binary.BigEndian.Uint64(x)))) 

        } 

        //equation (3.13) 

        coefficients[len(byteMessages)] = New(1.0) 

        //discriminant b2-ac 

        quad_b := Pow(coefficients[1], 2.0) 

        ac := Mul(coefficients[2], coefficients[0]) 

        timesfour := Mul(ac, big.NewFloat(4.0)) 

        b := Sub(quad_b, timesfour) 

 

        if Lesser(New(0.0), b) { 

            //Find roots 

            var zero1, zero2 = getZeroes2ndDegree(coefficients[2], 

                                     coefficients[1], coefficients[0]) 

            if zero1.Cmp(zero2) != 0 { 

                zeroes = append(zeroes, zero1) 

                zeroes = append(zeroes, zero2) 

            } 

        } 

    } 

 

    return initV, zeroes 

} 

   Similar to cbcrsa, when calling tworootrsa, one has to pass the original message divided into 

blocks. Then, a random value byte vector (initial vector) is constructed, in order to create the 

value for 𝐶, as explained in (3.11), using the hashStrings function, which is a recursive function 

that hashes all of the blocks. 𝐶 will be used to calculate 𝐶0, … , 𝐶𝑛−1, which are the coefficients 

for the polynomial function. After that, since the function is a 2nd-degree function, it is possible 

to use the discriminant factor (3.20-22) to find if the function has two roots. If this is confirmed, 

the quadratic formula is applied to find the roots of the equation, which are saved, along with the 

initial vector, to be saved in the Blockchain block structure. 

    When implementing (3.12), because hash functions in Golang do not accept two different 

inputs, a bitwise operation (XOR) had to be applied to unify both values into one and to create a 

hash-able singular vector. 
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func hashStrings(messages [][]byte, hash hash.Hash) []byte { 

 

    return hashStringsAux(messages[0], messages[1:], hash) 

} 

//Recursive auxiliar function 

func hashStringsAux(message []byte, messages [][]byte, hash hash.Hash) 

                                                                 []byte { 

    var length = len(messages) 

 

    if length == 0 { 

        hash.Write(message) 

        shaValue := hash.Sum(nil) 

        hash.Reset() 

 

        return shaValue 

    } else { 

        var hashValue = hashStringsAux(messages[0], messages[1:], hash) 

         

        hash.Write(bitwiseOperation(message, hashValue)) //XOR operation 

        shaValue := hash.Sum(nil) 

        hash.Reset() 

 

        return shaValue 

    } 

} 

   This function hashes every message recursively intending to obtain 𝐶, which is needed to 

calculate the coefficients of the polynomial function. 

   Verification algorithm: 

func verifyTwoRoot(iv []byte, z1 *big.Float, z2 *big.Float, 

                                                messages [][]byte) bool { 

    hash := sha256.New() 

    byteMessagesWIV := append(messages, iv)  
    //equation (3.11) 

    result := hashStrings(byteMessagesWIV, hash) 

    coefficients := make([]*big.Float, len(messages)+1) 

    //equation (3.12) 

    for i := 0; i < len(messages); i++ { 

        hash.Write(bitwiseOperation(messages[i], result)) //XOR operation 

        x := hash.Sum(nil) 

        hash.Reset() 

        coefficients[i] = new(big.Float).SetInt(big 

                              .NewInt(int64(binary.BigEndian.Uint64(x)))) 

    } 

    //equation (3.13) 

    coefficients[len(messages)] = big.NewFloat(1.0) 
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    //equation (3.16) 

    b1 := checkZero(coefficients, z1) 

    b2 := checkZero(coefficients, z2) 

 

    return b1 && b2 

} 

   The process to verify a Two-root RSA signature is quite simple, with some of the calculations 

having to be repeated from the signing process. This includes finding 𝐶 and 𝐶0, … , 𝐶𝑛−1. After 

this, the zeroes are used to calculate the value of the equation 𝑃(𝑥), with 𝑥 ∈  {𝑧1, 𝑧2 }, to know 

if they are the zeroes of the equation.  

Problems and limitations 

   There are no programmed functions to get the roots of n-degree polynomial functions with 

Golang. As such, a “man-made” solution was in need to be programmed to help find the roots of 

a function.  

   Given the theoretical definition of the roots in step 5, the algorithm needed to find 𝑡1, 𝑡2 ∈  [0, 𝑝] 

and 𝑠1, 𝑠2 ∈ [0, 𝑞]. Since 𝑝, 𝑞 and 𝑁 are, practically, defined by the RSA key generator (see RSA 

private/public key structures), the size of these numbers is based on the size of the keys, which is 

set for 256 bits or 32 bytes. With numbers this big, the roots in 𝑍𝑝 and 𝑍𝑞 are, basically, the same, 

which means that it is only necessary to find 𝑥1 and 𝑥2, skipping step 5. 

   The first practical implementation of this algorithm first found possible roots by applying the 

Rational Zero Theorem [96], where an n-degree polynomial function 

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … +  𝑎1𝑥 +  𝑎0  =  0 (4.17) 

with integer coefficients 𝑎0, 𝑎1, … , 𝑎𝑛.  

   If 𝑎𝑛 and 𝑎0 are not zero, then each rational solution 

𝑥 =  
𝑡

𝑣
 

(4.18) 

with 𝑡 and 𝑣 being coprime integers, satisfies the conditions that 𝑣 a divisor of 𝑎𝑛 and 𝑡 a divisor 

or 𝑎0. 

   However, this immediately brought up two problems: first, the time to find all the possible 

divisors of 𝑎0 lasted minutes, even when the algorithm was optimized by only searching up to the 

root of 𝑎0, by verifying both the current number and its square, as shown in Algorithm 5. This 

happens because 𝑎0
 is a really big number and there is no known way to find the divisors of a big 

number in Golang other than recurring to a brute strength approach. 

Algorithm 5: Finder of all divisors of a given number 

Input: Integer a 

Output: List of all divisors of a 

 

1. divisors := [] 

2. for i = 0 to sqrt(a): 

3. |   if(mod(sqrt(a), i) == 0 and i*i != a): 
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4. |   |   divisors := append(divisors, i) 

5. |   ˪   divisors := append(divisors, div(sqrt(a0), i)) 

6. | 

7. |   if(mod(sqrt(a), i) == 0 and i*i == a): 

8. ˪   ˪   divisors := append(divisors, i) 

9.  

10. return divisors 

   The second problem was because 𝑎𝑛 is always 1 and, as such, it only has itself as a divisor. 

Given that 1 is a universal divisor (every natural number can be, at least, divided by itself and 

1), 𝑡 and 𝑣 can never be coprimes. 

   To tackle this problem while respecting what had been specified prior by the algorithm 

definition, the degree of the function was set at 2. This means the message is to be divided into 

two blocks and the calculations are to be made under a quadratic function. To get the solution to 

these polynomial functions, a quadratic formula implementation was necessary, since it had not 

been implemented in Golang for big.Int type structures. Using quadratic functions also helps to 

ease the search for functions that have enough roots or any root at all, due to the discriminant 

factor.  

   With 𝑃(𝑥) defined as: 

𝑃(𝑥)  =  𝑎𝑥2  +  𝑏𝑥 +  𝑐 (3.19) 

and with {𝑎, 𝑏, 𝑐} being the coefficients of the quadratic function, if: 

𝑏2 − 4𝑎𝑐 >  0, 𝑃(𝑥) has at two real solutions (3.20) 

𝑏2 − 4𝑎𝑐 =  0, 𝑃(𝑥) has at one real solution (3.21) 

𝑏2 − 4𝑎𝑐 <  0, 𝑃(𝑥) has no solution (3.22) 

   The two roots obtained on the signature are stored on a big.Float type structures. However, this 

type does not provide required mathematical functions, like power or root, which had to be 

implemented to obtain the signature and verify the results. 

 Ethereum 

   Ethereum is developed in a modular fashion, with each component design and implementation 

being the most independent from each other as possible. While this eases the introduction and 

implementation of new mechanisms for the Blockchain system, Ethereum was not made with the 

intent to create and reinvent core functionalities, such as consensus protocols, focusing instead on 

being a user-friendly smart contract development and insertion platform. Therefore, it lacks 

documentation on how to develop other solutions to what is already implemented by the 

community, making it hard to look up what has to be changed and/or updated to functionally 

insert a new working consensus protocol. 

   Figure 3.7 represents interactions between nodes in a network while they try to achieve 

consensus over a list of transactions. The implementations referred above are to be deployed on 

the mine and verifySeal functions presented in the scheme, as will be showcased below in the 
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code snippets. These algorithms will substitute Ethash, the Proof-of-Work algorithm, utilized to 

achieve consensus, that is used at the moment in the main Ethereum network. 

 

  

Figure 3.7 - Network consensus interactions with Ethereum. 

1. Node 2 sends a message to Node 1. 

2. Node 1 adds the new message to its transaction list (TxList). 

3. Node 1’s Consensus Engine reads that transaction list. 

4. Consensus Engine mines a new solution, either with CBC-RSA or Two-root RSA mechanisms. 

5. Consensus Engine returns a sealed block. 

6. Node 1 broadcasts the new solution to the network. 

7. Nodes 2 and 3 verify the solution with their Consensus Engines. 

8. Nodes 2 and 3 return the response to Node 1. 

9. The block is added if the majority agrees, otherwise, it is discarded. 

   As seen in Ethereum’s Git repository [97], there is a large number of folders, each for each 

module of the Blockchain platform. However, for the implementation of a new consensus 

protocol, a programmer needs only to worry about the consensus, eth, and core folders and some 

of the files, as represented in Figure 3.8.  

 
Figure 3.8 - Ethereum files necessary for consensus implementation. 

While there are many other files inside Ethereum, only these matter when implementing a new consensus solution. 



43 

 

   To implement a new consensus protocol, one must create four new files with all the functions 

of the given consensus ‘Engine’ interface, on the ‘consensus.go’ file. The file ‘protocol.go’  holds 

the protocol structure, which is used to call the consensus methods and other general functions, 

such as getters. ‘algorithm.go’ holds the core code for the protocol, the hashing, and verification 

functions. The ‘sealer.go’ and ‘consensus.go’ files hold the seal (hashing) and verification 

processes, respectively. Most of the functions on these files can remain the same as the current 

ones (e.g., in Ethash) unless the consensus protocol specifically needs to change those parts. In 

this case, it was only necessary to change the mine and verifySeal functions. 

// Engine is an algorithm agnostic consensus engine. 

type Engine interface { 

    // Author retrieves the Ethereum address of the account that minted 

    // the given block, which may be different from the header's coinbase 

    // if a consensus engine is based on signatures. 

    Author(header *types.Header) (common.Address, error) 

 

    // VerifyHeader checks whether a header conforms to the consensus  

    // rules of a given engine. Verifying the seal may be done  

    // optionally here, or explicitly via the VerifySeal method. 

    VerifyHeader(chain ChainHeaderReader, header *types.Header,  

seal bool) error 

 

    // VerifyHeaders is similar to VerifyHeader, but verifies a batch  

    // of headers concurrently. The method returns a quit channel to  

    // abort the operations and a results channel to retrieve the  

    // async verifications (the order is that of the input slice). 

    VerifyHeaders(chain ChainHeaderReader, headers []*types.Header,  

seals []bool) (chan<- struct{}, <-chan error) 

 

    // VerifyUncles verifies that the given block's uncles conform to  

    // the consensus rules of a given engine. 

    VerifyUncles(chain ChainReader, block *types.Block) error 

 

    // VerifySeal checks whether the crypto seal on a header is valid  

    // according to the consensus rules of the given engine. 

    VerifySeal(chain ChainHeaderReader, header *types.Header) error 

 

    // Prepare initializes the consensus fields of a block header  

    // according to the rules of a particular engine.  

    Prepare(chain ChainHeaderReader, header *types.Header) error 

 

    // Finalize runs any post-transaction state modifications  

    // (e.g. block rewards)  but does not assemble the block. 

    // 

    Finalize(chain ChainHeaderReader, header *types.Header,  

state *state.StateDB, txs []*types.Transaction,  

uncles []*types.Header) 
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    // FinalizeAndAssemble runs any post-transaction state modifications  

    // (e.g. block rewards) and assembles the final block. 

    FinalizeAndAssemble(chain ChainHeaderReader, header *types.Header, 

  state *state.StateDB, txs []*types.Transaction,  

uncles []*types.Header, receipts []*types.Receipt)  

(*types.Block, error) 

    // Seal generates a new sealing request for the given input block and 

    // pushes the result into the given channel. 

    Seal(chain ChainHeaderReader, block *types.Block,  

results chan<- *types.Block, stop <-chan struct{}) error 

 

    // SealHash returns the hash of a block prior to it being sealed. 

    SealHash(header *types.Header) common.Hash 

 

    // CalcDifficulty is the difficulty adjustment algorithm.  

    // It returns the difficulty that a new block should have. 

    CalcDifficulty(chain ChainHeaderReader, time uint64,  

parent *types.Header) *big.Int 

 

    // APIs returns the RPC APIs this consensus engine provides. 

    APIs(chain ChainHeaderReader) []rpc.API 

     

    // Close terminates any background threads maintained by the  

    // consensus engine. 

    Close() error 

} 

mine function 

   The mine function receives a block structure, an id, and a seed. This function will create the 

signatures by following the signing algorithms of the consensus engine. For Ethash, it will use 

the built dataset to find a <hash, nonce> pair that corresponds to a certain rule, based on the set 

difficulty. 

   Ethash mine function core: 

Ethash will compute the PoW value of a given nonce. The PoW is compared to a given rule pattern 

for a target value and, if it matches, the value is stored in the block header, along with the nonce. 

If the value does not match the rule pattern, the nonce is incremented and the process repeats until 

a valid PoW value is found. 

// We don't have to update hash rate on every nonce, so update after 

// 2^X nonces 

attempts++ 

if (attempts % (1 << 15)) == 0 { 

    ethash.hashrate.Mark(attempts) 

    attempts = 0 

} 
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// Compute the PoW value of this nonce 

digest, result := hashimotoFull(dataset.dataset, hash, nonce) 

if new(big.Int).SetBytes(result).Cmp(target) <= 0 { 

    // Correct nonce found, create a new header with it 

    header = types.CopyHeader(header) 

    header.Nonce = types.EncodeNonce(nonce) 

    header.MixDigest = common.BytesToHash(digest) 

    // Seal and return a block (if still needed) 

    select { 

    case found <- block.WithSeal(header): 

        logger.Trace("Ethash nonce found and reported", 

        "attempts", nonce-seed, "nonce", nonce) 

    case <-abort: 

        logger.Trace("Ethash nonce found but discarded", 

            "attempts", nonce-seed, "nonce", nonce) 

    } 

} 

nonce++ 

 

   CBC-RSA mine function core: 

CBC-RSA algorithm will hash the header information and place said hash on the header, along 

with the public key information, for verification. The public key information has to be inserted in 

the block since there is no other known way to store RSA keys and fetch them later for verification 

on Ethereum. While this reduces privacy, it also reduces the time required for verification, since 

the verifier node does not need to fetch this data somewhere else. 

// Compute cbc-rsa hash 

digest := cbcrsa.cbcrsa(splitArrayNParts(hash, 

    cbcrsa.conf.Divisions)) 

// Found hash, create a new header with it 

header = types.CopyHeader(header) 

header.MixDigest = common.BytesToHash(digest) 

header.PubKeyN = cbcrsa.getPubKey().N 

header.PubKeyE = big.NewInt(int64(cbcrsa.getPubKey().E)) 

 

// Seal and return a block (if still needed) 

select { 

case found <- block.WithSeal(header): 

    logger.Trace("CBCRSA hash found and reported") 

case <-abort: 

    logger.Trace("CBCRSA hash found but discarded") 

} 

   Two-root mine function core: 

Two-root RSA will create a polynomial equation based on the information stored in the given 

header and a random initial vector. The algorithm will then try to find two valid roots for this 
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equation, which, when found, are stored in the header along with the aforementioned initial 

vector.  

// Compute two-root rsa roots 

digest, roots := tworoot.tworootrsa(splitArrayNParts(hash, 

    tworoot.conf.Degree)) 

// Two roots found, create a new header with them and IV 

header = types.CopyHeader(header) 

header.MixDigest = common.BytesToHash(digest) 

header.Roots = roots 

 

// Seal and return a block (if still needed) 

select { 

case found <- block.WithSeal(header): 

    logger.Trace("Two-root RSA solution found and reported") 

case <-abort: 

    logger.Trace("Two-root RSA solution found but discarded") 

} 

   For the Ethereum implementation, the message M that is used in the algorithms is a hash of the 

block header obtained with the SealHash function presented below. 

// SealHash returns the hash of a block prior to it being sealed. 

func (tworoot *TWOROOT) SealHash(header *types.Header) (hash common.Hash)

 { 

    hasher := sha3.NewLegacyKeccak256() 

 

    rlp.Encode(hasher, []interface{}{ 

        header.ParentHash, 

        header.UncleHash, 

        header.Coinbase, 

        header.Root, 

        header.TxHash, 

        header.ReceiptHash, 

        header.Bloom, 

        header.Difficulty, 

        header.Number, 

        header.GasLimit, 

        header.GasUsed, 

        header.Time, 

        header.Extra, 

    }) 

    hasher.Sum(hash[:0]) 

    return hash 

} 



47 

 

verifySeal function 

   The verifySeal function receives a header and verifies if the hash it holds is correct for the 

information it has in it. For Ethash, it, again, recurs to the dataset, which is obtained with the 

block number and uses the hash and nonce to verify if the obtained <hash, nonce> pair 

corresponds to the <hash, nonce> pair received through the given header. As for the lightweight 

approaches, the process calls the verification algorithms, passing a header with the mixHash being 

the chained signature and the pubKey values being the public key of the signer or a header with 

the initial vector on the mixHash slot and the roots for the solution. 

   Ethash verifySeal function core: 

The ethash algorithm fetches the dataset used when the nonce was found and calculates the PoW 

value, compares it to the current value on the header, to check for tampering, and then compares 

it to the rule pattern used when it was calculated the first time. 

digest, result = hashimotoFull(dataset.dataset, Ethash 

    .SealHash(header).Bytes(), header.Nonce.Uint64()) 

 

// Verify the calculated values against the ones provided in the header 

if !bytes.Equal(header.MixDigest[:], digest) { 

    return errInvalidMixDigest 

} 

 

target := new(big.Int).Div(two256, header.Difficulty) 

if new(big.Int).SetBytes(result).Cmp(target) > 0 { 

    return errInvalidPoW 

} 

return nil 

   CBC-RSA verifySeal function core: 

CBC-RSA verification under the verifySeal function is pretty simple, since the verification 

algorithm, showcased in Chapter 3.2.1., already returns a Boolean value that is true if the value is 

correct and false if it is not. 

digest = cbcrsa.verifyCBCRSA(header.MixDigest[:], splitArrayNParts(hash,  

    cbcrsa.conf.Divisions), header.PubKeyN, header.PubKeyE) 

 

// Verify the calculated values against the ones provided in the header 

if !digest { 

    return errInvalidMixDigest 

} 

   Two-root RSA verifySeal function core: 

The verification process is also simple, following the same reasoning that was explained with 

CBC-RSA, with the verification algorithm returning only a Boolean value that is true if the given 

numbers are roots of the polynomial equation created from the hashed header + the IV vector. 
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digest = verifyTwoRoot(header.MixDigest.Bytes(), header.Roots[0],  

    header.Roots[1], splitArrayNParts(hash, tworoot.conf.Degree)) 

 

// Verify the calculated values against the ones provided in the header 

if !digest { 

    return errInvalidMixDigest 

} 

   If the new protocol needs to change the block structure (like Two-root RSA needed, due to the 

output being a trio of values), this must be changed in the ‘core/blocks.go’ file. 

// Header represents a block header in the Ethereum blockchain. 

type Header struct { 

    ParentHash  common.Hash     

    UncleHash   common.Hash     

    Coinbase    common.Address  

    Root        common.Hash     

    TxHash      common.Hash     

    ReceiptHash common.Hash     

    Bloom       Bloom           

    Difficulty  *big.Int        

    Number      *big.Int        

    GasLimit    uint64          

    GasUsed     uint64          

    Time        uint64          

    Extra       []byte          

    MixDigest   common.Hash     

    Nonce       BlockNonce      

    Roots       []*big.Float    

    PubKeyN     *big.Int        

    PubKeyE     *big.Int        

} 

   For CBC-RSA, the PubKeyN and PubKeyE values are necessary for verification purposes, with 

the signature is stored in the mixDigest value, while for Two-root RSA the IV is stored in the 

mixDigest and the roots are stored as an array of *big.Float. 

   Finally, in the file ‘backend.go’, in the eth folder, the function ‘CreateConsensusEngine’ is 

required to include a new conditional variable for the new consensus protocol, to create it during 

runtime. 

// CreateConsensusEngine creates the required type of consensus engine  

// instance for an Ethereum service 

func CreateConsensusEngine(stack *node.Node,  

chainConfig *params.ChainConfig, config *ethash.Config,  

notify []string, noverify bool, db ethdb.Database) 

consensus.Engine { 

    // My Consensus algorithms 

    if chainConfig.CBCRSA != nil { 



49 

 

        log.Warn("CBC-RSA is configured as consensus engine") 

        return cbcrsa.New(chainConfig.CBCRSA, db) 

    } 

 

    if chainConfig.TwoRootRSA != nil { 

        log.Warn("Two-root RSA is configured as consensus engine") 

        return tworoot.New(chainConfig.TwoRootRSA, db) 

    } 

    // If proof-of-authority is requested, set it up 

    if chainConfig.Clique != nil { 

        return clique.New(chainConfig.Clique, db) 

    } 

    // Otherwise assume regular proof-of-work 

    switch config.PowMode { 

    case ethash.ModeFake: 

        log.Warn("Ethash used in fake mode") 

        return ethash.NewFaker() 

    case ethash.ModeTest: 

        log.Warn("Ethash used in test mode") 

        return ethash.NewTester(nil, noverify) 

    case ethash.ModeShared: 

        log.Warn("Ethash used in shared mode") 

        return ethash.NewShared() 

    default: 

        engine := ethash.New(ethash.Config{...}, notify, noverify) 

        engine.SetThreads(-1) // Disable CPU mining 

        return engine 

    } 

} 

   This creates the protocol object that is going to be used by the geth process (Ethereum’s main 

CLI client, used to initiate a new node and the network) to call the consensus functions during 

runtime. 

   Ethereum’s block structure is showcased in Figure 3.9, but it can be subject to change if the 

consensus protocol requires a new field to be added, as is the case for the new lightweight 

approaches. In this implementation of the algorithms, a hashed version of the header’s block is 

passed as the input Message M, which is then divided into a given number of blocks, as specified 

before, and then processed following the algorithm’s procedures.  
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Figure 3.9 - Ethereum block structure.  

With the implementation of CBC-RSA and Two-root RSA, two new fields had to be added: Public Key Pk and Zeroes 

Z0. The Initial Vector Iv from Two-Root was placed on the mixHash field of the block. 

   Ethereum also holds puppeth, a CLI wizard that is used mainly to generate genesis configuration 

files, making it a lot easier to create such files, to later start the P2P network. Under the 

cmd/puppeth folder, in the ‘wizard_genesis.go’ file, a developer can add their protocols to the 

already existing ones by adding more options for the creator to choose for their genesis. 

// makeGenesis creates a new genesis struct based on some user input. 

func (w *wizard) makeGenesis() { 

    // Construct a default genesis block 

    genesis := &core.Genesis{ 

        ... 

    } 

    // Figure out which consensus engine to choose 
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    fmt.Println() 

    fmt.Println("Which consensus engine to use? (default = clique)") 

    fmt.Println(" 1. Ethash - proof-of-work") 

    fmt.Println(" 2. Clique - proof-of-authority") 

    fmt.Println(" 3. CBC-RSA - lightweight proof-of-work") 

    fmt.Println(" 4. Two-root RSA - lightweight proof-of-work") 

 

    choice := w.read() 

    switch { 

    case choice == "1": 

        // In case of ethash, we're pretty much done 

         ... 

    case choice == "2": 

        // In the case of clique, configure the consensus parameters 

         ...        } 

    case choice == "3": 

        // In case of CBC-RSA, set the number of divisions 

        genesis.Config.CBCRSA = &params.CBCRSAConfig{Divisions: 2} 

    case choice == "4": 

        // In case of Two-root RSA, set the degree of the polynomial 

        // function 

        genesis.Config.TwoRootRSA = &params.TwoRootRSAConfig{Degree: 2} 

    default: 

        log.Crit("Invalid consensus engine choice", "choice", choice) 

    } 

    ... 

} 

   Ethereum’s fork policy allows for more than one chain to be active at a time, but, over time, the 

longest one (with more summed “work” overall) is selected unilaterally as the main chain. There 

is also the definition of uncle blocks (blocks that were created and proposed at the same time as 

the chosen block for the main chain) and their creators also receive some rewards for the work 

done.  

 Network Architecture 

   In the context of IoV, the network nodes are all the devices that participate in the exchange of 

data, like on-board computers on cars, traffic light sensors, speed radars or other sensors present 

in an area. This communication can happen due to a variety of factors (e.g., video or audio 

streaming, file transfer, information sharing, …) and in various fashions (e.g., continuous, event-

based, time-based, …). In these networks, RSUs could be used as the main minters for blocks, 

while the resource-constrained devices would carry only the responsibilities that come with the 

communication itself. However, this also brings out some discussion on the benefits and problems 

with centralizing this responsibility to RSUs. In a fully decentralized scenario, the devices 

themselves are the miners and, in those cases, the lightweight algorithms are mandatory for a fully 

functionable and efficient Blockhain network.  
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   When an event is detected (such as an accident or heavy traffic congestion), the vehicle that 

detected such event will broadcast a message to the nearby vehicles, informing them. Those 

receiving the message process it and add it to the block that is currently being mined, which is 

then hashed according to the specified CES protocols. The receiver asks the nearby vehicles for 

validation and, if confirmed by a majority, the block is added to the local chain and all the chains 

of the nearby vehicles. In an idyllic scenario, the validation process would be done by the closest 

RSU unit, and the chain would be built in a cloud service, in order to reduce the weight placed 

upon the resource-restrained devices. This last network topography and respective interactions 

are represented in Figure 3.10. 

 

Figure 3.10 - Ideal network scenario. 

 A: Vehicle 1 detects the accident and broadcasts the event to the nearby nodes. B: The receiving nodes receive the 

information, create and hash the block, and send it to the nearest RSU. C: The RSU sends the block to all nearby nodes 

for verification, waits for >50% confirmations. D: After the block is verified and confirmed by a majority of the nodes, 

the block is sent to the chain, in the cloud. This format decouples the chain storage to the cloud, which lowers the 

requirements for the devices, reduces energy consumption and device complexity. 
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Capítulo 4 Performance Evaluation 

   Following the implementation and integration of the solutions on Ethereum, and the design of 

the network architecture, it was only necessary to test these solutions on a simulation of said 

presented network. 

 Simulation Model 

   This section presents the utility and configurations of the tools required for the simulations that 

were involved with testing and evaluating the performance of the designed algorithms in a real-

case scenario. 

4.1.1  Network Simulator 

   For the evaluation, a scenario was simulated in the Veins network simulator, which utilizes 

SUMO for traffic generation and OMNET++ for communication pattern simulation. In this 

scenario, vehicles are continuously introduced on the map and follow a certain path. When an 

event is detected (e.g., an accident, that makes the vehicle pause for some time), a message is 

broadcasted to all nearby nodes warning of such event and they change their route, if possible. 

After the retrieval of the messages sent (i.e., the sender and the receiver), this information was 

then applied onto the Blockchain to simulate close-to-real-life behavior, since there is not a known 

way to automate the requests from the simulation to the chain. 

   The simulation time on Veins was 200s with an update interval of 1s. The 13 simulated vehicles 

drove in an map of Erlangen with an area of 2.5 x 2.5 km. Communications were set to have a 

transmission rate of 6Mbps and a transmission power of 20mW, with 80bit packet header length. 

Every 10th node, starting from node 0, would detect one accident 73 seconds after being spawned 

in the map. Node mobility was traced by SUMO. The configuration parameters for the simulation 

on Veins is presented in Table 4.5. 

 

 

 

 

 

Table 4.5 - Veins simulation configuration parameters 

Parameter Value 

sim-time-limit 200s 
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playgroundSizeX  2500m 

playgroundSizeY  2500m 

playgroundSizeZ  50m 

manager.updateInterval  1s 

manager.numVehicles 13 

nic.mac1609_4.txPower  20mW 

nic.mac1609_4.bitrate  6Mbps 

nic.phy80211p.minPowerLevel  -110dBm 

node[*].nic.phy80211p.antennaOffsetY  0 m 

node[*].nic.phy80211p.antennaOffsetZ  1.895 m 

node[*].appl.headerLength  "80 bit" 

node[*].appl.beaconInterval  1s 

node[*0].veinsmobility.accidentCount  1 

node[*0].veinsmobility.accidentStart 73s 

4.1.2  Ethereum 

   To run this scenario, Ethereum accounts were created equal to the number of vehicles of the 

simulation (in this case, 13) that had sent some messages in the simulation. Each message 

exchange recorded in the network simulation was transformed into a 1 Wei (Ethereum’s lowest 

currency value) transaction from the sender account (the vehicle that sent the message) to the 

receiver account (the vehicle that received said message). 

   Each node was initialized with the respective consensus protocol, account, and some starting 

currency (e.g., 0xffffff, which would be enough for the required transactions gas costs) and 

connections were established between them, using their network IDs and the addPeer(nodeID 

[]byte) function provided by the admin API. CBC-RSA and Two-root RSA only require the 

networkId, in this case 4000, and their parameter on the configuration file, for the simulation. 

Ethash also requires gasLimit and difficulty, for later calculations, which where, respectively, 

"0x47b760" and "0x80000". The consensus protocol configuration (which is defined in the 

genesis block file) is represented in Table 4.6. 

Table 4.6 - Ethereum genesis block configuration file parameters 

Parameter Value 

chainId 4000 
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ethash OR cbcrsa 

OR tworoot 

{*specific config 

params*} 

gasLimit "0x47b760" 

difficulty "0x80000" 

   To measure the quality of algorithms, through their performance, Ethereum was made to register 

the time it took to hash and the time it took to verify that hash on a block, in microseconds. These 

values were then processed to calculate the average, in microseconds per block. 

 Results 

   The following data was gathered in two devices: a regular computer running Linux, with 8GB 

of RAM and two cores, and a Raspberry Pi, running a 64-bit ARM OS, with 4GB of RAM. The 

real-life scenario with simulated requests ran on the regular computer, due to the number of 

accounts that needed to run simultaneously, using 13 mining nodes exchanging 200 transactions, 

based on the data acquired on Veins. 

 
Figure 4.11 - Comparison of average times for the generation of block hashes for the various algorithms. 

Ethash is the main PoW-based consensus protocol used by Ethereum. The time axis had to be scaled to 𝑙𝑜𝑔10 to fit all 

values, or the values for CBC-RSA and Two-root RSA would be two fine lines on the bottom of the graph. 

   In Figure 4.11, the data shows that the proposed lightweight algorithms are up to 12000x times 

faster than Ethash in a regular computer and up to 5000x times faster in a device with lower 

computational power. Ethash also has a considerably slower mining initiation process, since the 

miner nodes need to first build the DAG in memory which takes up to 5 and a half minutes with 

4GB of RAM. The DAG also has to be updated every 3840000 blocks, being calculated while the 

blocks are mined, which reduces the computational capacity for the mining itself. The DAG also 

increases its size when it updates, which creates another barrier for Ethash in these limited devices 

due to storage shortages. 
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Figure 4.12 - Comparison of average times for the generation of block hashes for the lightweight algorithms. 

CBC-RSA is faster than Two-root RSA, but the difference is not huge, as seen in Fig. 5. However, this difference could 

deepen with proper optimization. 

   The data in Figure 4.12 shows that CBC-RSA is somewhat faster than the Two-root RSA 

approach. This happens because CBC-RSA only hashes and chains the byte values, while Two-

root requires more complex mathematical calculations and root finding, which takes longer to 

process. This difference could, eventually and theoretically, increase with the degree of the 

polynomial function, if the algorithm was be optimized to deal with such constructions. A time 

increase with lower RAM is expected since the latter reduces the computational power of the 

device, increasing hash production times, but the average times still do not surpass 2500μs, a 

really small time value, which results in an enormous increase in output of block hashes when 

compared to the Ethash variation. 

 
Figure 4.13 - Comparison of average times for the verification of created block hashes for the various algorithms.  

Ethash takes several thousands of times longer to verify a hash than the proposed lightweight algorithms and a scale 

of log10 had to be used, again, to be able to compare the performance of the algorithms. 
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   Figure 4.13 shows that the Ethash verification protocol, while faster than the hash creation 

mechanism, still takes longer than the proposed lightweight mechanisms. This is an important 

measure since it fastens the communications and processing of the blocks to be added to the chain. 

The proposed verification mechanisms are, on average, 12000x (CBC-RSA) and 40000x (Two-

root) faster than the Ethash approach. Two-root RSA is faster than CBC-RSA because the 

verification mechanism does not require any type of complex calculations or hashing processes, 

being an easy math problem to check the truth of the given solutions, while CBC-RSA has to de-

hash the given mixHash in order to verify it. 

 Technological limitations 

   While working with these technologies to obtain results and have a measure of the quality of 

the work done, some limitations were encountered due to a lack of information on the technology 

or problems that appeared due to the behavior of the technology itself not being the most ideal for 

the problem in question. These limitations slowed down the process of testing and quality data 

generation significantly and are described in the sections below. 

4.3.1  Network simulator 

   Veins, while there is some documentation on its website, is not used but by a specific niche of 

researchers and, therefore, there is not much discussion online about how to use its tools, 

including SUMO. The main source of help is video tutorials on the internet. However, most of 

these are specific on their objective, which is not always the same as the one necessary at a given 

time. Limiting the number of vehicles on Veins is also very confusing, since the given value does 

not limit exactly the number of vehicles being simulated at a given time in the simulation, but the 

rate of creation of new vehicles in the simulation, i.e., in SUMO. 

   The code for Veins, OMNET++, and SUMO is also very difficult to understand, due to the lack 

of documentation and comments that explain how every module works and its usage in the 

simulator. 

4.3.2  Ethereum 

   There were some problems with Ethereum, the biggest being the lack of documentation on how 

to implement new protocols, which required some trial and error. Secondly, testing Ethereum on 

the Raspberry Pi required the installation of a beta 64-bit OS, which required some investigation 

on the software offered by the Raspberry Pi organization. 

   During testing, the nodes would have memory problems and crash and had to be brought up 

again manually, in a quick fashion, to participate in the network and be up-to-date with all the 

exchanged data While gathering data for Ethash, due to the number of accounts running at the 

same time, the DAG construction, necessary for the nodes to start the mining process, took well 

over 40minutes, in good runs. 

   For CBC-RSA and Two-root RSA hashing tests, the fast sync option was making nodes drop 

the very first few blocks they got, which lead to problems later on because they would receive the 

“children” of those blocks and when verifying the header history, they would not find the parent 
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hash. That created a ripple effect which led to errors and nodes dropping other nodes as trustful, 

cutting communications, that had to be brought up again. 

   Due to how fast the hashing process is, the number of blocks send through the network was so 

high that the nodes could not verify them correctly. Block creation had to be slowed down to 1 

second per block, to obtain verification times. While this would not be a problem, if the mining 

only occurred, when necessary, which was the ideal scenario, with the existing Ethereum 

architecture and functionality, the usage of algorithms purely leads to these blockades. 

   Lastly, the transactions had to be inserted manually through curl, since there is no automatic 

way to insert transactions on an Ethereum network. In addition, the transactions had to be sent 

with some interval of time between them, or they would all be minted onto the same block, which 

could negate the communication enforcing property. There is also a problem with how 

transactions are shared in the network: they are broadcasted to all nodes, so all nodes mint their 

blocks with transactions that they might not participate in. This also entails that the block that is 

chosen for the global shared chain is not the one that has the transaction that would affirm the 

communication enforcement property. 
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Capítulo 5 Conclusion 

   This work presents two new lightweight solutions to tackle the energy and computation 

limitations of the devices that proliferate IoV networks. These approaches follow mathematically-

proven cryptographic primitives-based schemes that ensure the needed security properties for 

communication while preventing free-riding with a communication enforcing property linked to 

them.  

   Chapter 2 summarizes the state-of-the-art for IoV and Blockchain technologies, including 

possible application areas and underlying technologies, with conclusions on why the latter’s 

integration is so desired on the former due to the properties of both. Then, a listing of applications 

of Blockchain-based solutions in IoV is explored, where Blockchain is used to solve security 

problems in data sharing and/or storage in the context of IoV. Afterward, we review some of the 

most popular network simulators for IoV scenarios and some of the most popular Blockchain 

platforms available. The Internet of Vehicles has a lot of potential in improving driving 

experiences and infrastructure in the foreseeable future. However, it also requires development in 

ensuring security for its users and service providers. Blockchain has been proven to be a viable 

solution to cater to the security needs of IoV systems. Even so, Blockchain still needs 

improvements to excel in these environments. 

   In Chapter 3, the design and implementation of the two lightweight approaches are explained 

in detail. Firstly, the definition of a CES is explained and then, mathematical proof for the two 

lightweight CES algorithms (i.e., CBC-RSA and Two-root RSA) is given, which also provides 

instructions on how to build said schemes for general cases. Later on in the Chapter, the 

implementation with Golang and the integration of the algorithms on Ethereum, including 

limitations encountered during these processes. This also includes commentary on how the 

Ethereum project’s modules are structured, which require changes when integrating a new 

consensus protocol, and what changes were necessary to implement the two lightweight 

approaches, with code samples that showcase the actual practical changes and what are they for. 

   Given the results gathered, exposed, and explained in Chapter 4, it is possible to conclude the 

proposed work is a viable solution to the resource problems that affect traditional Blockchain-

based solutions for IoV networks and can be applied in every type of Blockchain for this purpose 

since the algorithms are decoupled from the development environment. The protocols can be 

implemented in any Blockchain system that supports Proof-of-Work protocols and is built in a 

programming language that provides the same cryptographic functions and similar data types. 

The proposed algorithms have also proven to be faster and consume less time and less energy to 

provide the necessary block hashes to achieve distributed consensus, along with the 

aforementioned free-riding prevention. 

 Future work 

   Regarding future work for the algorithms, a generalization process is one of the paths to follow, 

for CBC-RSA to tolerate more than 2 message block divisions and for Two-root RSA to be able 
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to handle n-degree polynomial functions. For CBC-RSA, an in-depth investigation on how 

Golang does bytes calculations would be interesting, focusing on how those could lead to the 

verification errors found when dividing the message into more than 2 blocks. Two-root RSA could 

be implemented with the full-force method to find roots presented in Algorithm 5, utilizing a 

multithreaded approach that could ease the power consumption and duration of the root-finding 

algorithm. It would also be interesting to investigate how the increase in divisions of the original 

message affects the efficiency and security of the protocols, either positively or negatively, or 

even at all. 

   Two-root RSA integration also had some problems in the mining process, where it would stop 

after mining a random number of blocks and the process had to be restarted in order to mine more 

blocks, requiring some attention on this matter, since the source of this problem was not found. 

   With the goal to further reduce the energy and power consumption, Ethereum could be changed 

to drop the continuous mining process, only mining when a transaction or a list of transactions 

arrives at the device, or even periodically. This approach also helps with possible storage 

problems, since the chain grows larger even thousands of times faster with the lightweight 

approaches and while the DAG is not a problem, a large blockchain structure stored in the memory 

of limited devices could be problematic. 

   Another possible change for Ethereum would be the removal of the property of global 

knowledge of transactions that are exchanged in the network between devices, making the details 

only known by the devices that are required to have knowledge of those transactions, which could 

possibly be achieved by hashing and signing the transactions before adding them to the block. A 

transformation for cloud-based storage and RSU verification, to remove those responsibilities 

from the devices is an interesting path to follow and while there is some research about the subject, 

there is nothing for Ethereum. 
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