
FinalComm: Leveraging dynamic communities to improve
forwarding in DTNs

Naercio Magaia, Pedro Dinis Gomes, Paulo Rogério Pereira
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
naercio.magaia@tecnico.ulisboa.pt,pedro.dinis.gomes@tecnico.ulisboa.pt,prbp@inesc.pt

ABSTRACT
This article proposes a social-based routing protocol for Delay-
Tolerant Networks (DTNs) known as FinalComm. FinalComm al-
lows nodes to build a view of the existing communities in the
network. With this information, nodes are able to relay messages
after computing if the neighbor will most probably meet the desti-
nation or any other node from the community of the destination of
the message.

Simulation results shows that FinalComm is able to achieve a
high delivery rate and an extremely low overhead ratio, if compared
with four other routing protocols. Specifically, FinalComm presents
average gains of 31.4% in terms of delivery rate in comparison with
other routing protocols for the scenarios considered.

CCS CONCEPTS
• Networks→ Network simulations; Ad hoc networks;

KEYWORDS
Delay-Tolerant Networks, Routing protocol, Community, Algo-
rithms

1 INTRODUCTION
Delay-Tolerant Networks (DTNs) [6] are characterized by not hav-
ing permanent end-to-end connectivity and therefore presenting
long and variable delays, high error rates, and intermittent con-
nectivity. To send a message from one point to another, it can take
minutes, weeks or even months. At each time frame, the connec-
tions or opportunities that one node has to transmit a message
may be different due to the mobility of the nodes. Since a DTN is a
dynamic network, it may be necessary for some intermediate nodes
to store messages, carry them and, if adequate, forward them to a
next hop node or the destination, if that is the case. This is known
as the store-carry-and-forward approach. Bearing this in mind, it is
understandable why classical routing protocols for Mobile Ad-Hoc
Networks (MANETs) are not suitable for DTNs.

Some member of the DTN research community are focused on
developing space communications [6] meanwhile others only work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PE-WASUN’17, November 21–25, 2017, Miami, FL, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5166-9/17/11. . . $15.00
https://doi.org/10.1145/3134829.3134836

with scenarios where there are few communication’s infrastructures
and end-to-end connectivity does not exist all the time.

Consider, for instance, least developed countries where deploy-
ing a DTN can bring huge advantages. It is possible that people that
live in poorer or remote areas where there are no communication’s
infrastructures or the few ones that exist are not affordable to them
may benefit from it. In such cases, by having a simple device like a
smart-phone, in which they just have to invest once and the cost
is smaller than an annual subscription for Internet access, they
can have access to emails, for example, if a DTN is deployed. It is
obvious that they do not receive emails instantly, but at least they
are able to have access to information more inexpensively.

Although in developed countries there are multiple efficient
communication’s infrastructures, DTNs can also have a useful role.
Remote areas exist even in developed countries, where typically the
population does not have many resources. Alternatively, imagine,
for example, a natural catastrophe that brings communications
down. It would be desirable to have a backup system for some
services, which could continue to operate in a DTN. In summary,
DTNs can be used in multiple scenarios through a fast and cheap
deployment when comparing with more complex communication’s
infrastructures.

Hence, DTNs have many use cases. It is however important
that they are deployed in an efficient manner, that is, the routing
protocols proposed for DTNs should have algorithms that are able
to increase the number of messages that reach their destinations
using an intermittent end-to-end connection and to consume the
least possible number of resources such as energy and memory
from devices.

Some routing protocols have been proposed in literature [4, 11]
that use social metrics such as community. According to sociology
[9], a community can be defined as a group of people living in the
same location and sharing similar interests. These routing protocols
that use social metrics, also known as social-based routing proto-
cols, present higher delivery probability if compared to those that
do not use such metrics. However, the algorithms used by these
protocols to detect communities only consider that nodes can join
a community meanwhile they should also be able to leave them,
similarly to what people eventually do when they move from one
location or region into another.

This article proposes FinalComm, a new social-based routing
protocol for Delay-Tolerant Networks (DTNs). FinalComm takes
into consideration social relationship between nodes when it has
to decide if a message should be sent from one node to another or
even deleted. It also consider that social interests may change over
time and proposes algorithms that capture and update the utilized
social structures accordingly.

The article is organized as follows. Section 2 presents background
and related work. Section 3 presents the concept behind the Final-
Comm protocol, its architecture andmechanisms. In Section 4 and 5,
the simulation model and results are presented. Finally, conclusions
drawn from this work are presented in Section 6, along with a few
remarks on future work.

2 BACKGROUND AND RELATEDWORK
DTN routing protocols can be divided in two categories: traditional
and social-based. The first category includes all routing protocols
that do not consider relationships among nodes (e.g., [7, 14, 15])
meanwhile the second includes protocols that try to explore social
aspects, i.e., the fact that nodes tend to have mobility patterns that
are based on social factors instead of simply random.

According to [17], it is possible to enumerate at least three im-
portant social metrics that DTN routing protocols are based on:
community, centrality and similarity.

One of the most important social metric is community. When
analyzing social relationships between nodes, adding them to one
or more communities is a good way of summarizing their common
interests. Some other aspect to consider within a community is the
level of interaction among its members. Usually, some members
tend to interact more than others. It has also been proven that
a member of a community will most likely interact with other
members of the same community than with strangers [16].

Another important social metric is centrality, which represents a
measure of how important a node is in a network. This importance
can be categorized in three different groups: degree centrality, be-
tweenness centrality and closeness centrality [10]. The first, and
the simplest, refers to the number of links a node has and it can be
calculated locally. Usually, nodes with the highest number of links
are the ones with which other nodes want to forward messages
to. Due to their high number of connections, it is most likely that
the messages will reach their destination faster. The second, refers
to the number of shortest paths that crosses a given node overall
shortest paths. In the last type, the centrality of a node is calculated
by inversing the average shortest path distance from it to all other
nodes.

Similarity describes how close two nodes are from each other. It
allows estimating the probability of two node to re-encounter in
the future considering: the number of common neighbors between
them, the number of shared interests or the number of shared
locations.

Now, some relevant social-based routing protocols to this work
are presented. The BubbleRap [4] routing protocol is based on two
social metrics, community and centrality, to reduce the number
of copies of the same message around the network but having a
high delivery probability. It is based on Label [3] and Rank [1]
algorithms. The Label algorithm uses explicit labels in nodes to
identify the communities they belong to, while the Rank algorithm
forwards messages to nodes with higher centrality than the current
node. Generally speaking, a node belongs to a community and it
is assumed that each node is part of at least one community. On
the other hand, to identify the most popular nodes, the protocol
uses betweenness centrality that is difficult to estimate in dynamic
networks [10].

As stated in [4], both Label and Rank algorithms have some limi-
tations. The Label algorithm is not capable of forwarding messages
away from the source when the destination is socially far away,
and the Rank algorithm, in which each node does not have a view
of the global ranking, is not appropriate for big scenarios, as small
communities will be difficult to reach. The BUBBLE algorithm was
proposed to overcome the previous drawbacks. BUBBLE works as
follows: if a node wants to send a message to a certain destination,
the first thing that it does is to bubble this message to another node
that has a higher global rank until the message reaches a node
with the same label of the destination node’s community. After
that, global ranking will be no longer used and instead messages
are bubbled up using local ranks. In the end, messages will suc-
cessfully reach their destinations or they will expire. Communities
are detected by one of two possible ways: labels or a distributed
mechanism. The k-clique algorithm and Weighted Network Anal-
ysis (WNA) [12] are viable options as a distributed mechanism.
Based on [13], a k-clique community is defined by a union of com-
plete sub-graphs of size k (k-cliques). Two k-cliques are adjacent
if they share k-1 nodes. The k-clique algorithm was designed for
binary graphs but with a threshold for edges of the contact graphs,
therefore it can be used in DTN routing protocols [4].

The core of the BubbleRap protocol is an algorithm calledDiBuBB,
which is a modified version of BUBBLE. In it, BUBBLE is imple-
mented in a distributed way and the mechanism used for detecting
communities is the k-clique algorithm, which has detection accu-
racy up to 85%.

The dLife [11] routing protocol was proposed to explore a limi-
tation of several other approaches that did not consider that social
structures could evolve over time. It explores the user’s daily life
routine, as they can be used to predict future interaction between
nodes. The social metric used is similarity. The dLifeComm [11]
routing protocol, which is slightly different from dLife as it takes
into account communities, was also proposed.

One of the drawbacks of the previous social-based protocols
is when the destination is part of a community in which every
node has a low global rank. In this case, proper relay nodes may be
difficult to identify. In addition, these protocols only consider that
nodes can join a community meanwhile they should also be able to
leave them.

3 THE FINALCOMM PROTOCOL
FinalComm is a social-based routing protocol for DTNs that uses
two social metrics, namely community and similarity. It addresses
a drawback related to the use of global centrality of the nodes
meanwhile also considering that social interests may change over
time, i.e., nodes can also be removed from communities.

The main idea behind this approach is that nodes should have
a bigger view of the network, even though that view could not
always be the most updated one. Therefore, nodes have to store
other node’s communities, which is done every time they meet.
Let node A and node B be in communication range between each
other. Node A will store node B’s community since it is the most
updated information that node A can get from node B, and vice-
versa. Then, both nodes will update their communities’ information
considering the most recent information received. In FinalComm,

Figure 1: The block diagram of FinalComm

node B belongs to node A’s community if the total contact time
between A and B is greater or equal to the community familiar
threshold (hereafter the commfamiliar threshold), considering all
the contact time with all other nodes in the network that A has
had. Hence, it is expected an increase in the forwarding efficiency
by taking into account the community of the destination of the
message. It is also expected that the number of successful delivered
messages (Eq. 1) and overhead ratio (Eq. 2) to increase and decrease,
respectively.

delivery rate =
messaдes delivered

messaдes created
(1)

overhead ratio =
messaдes relayed −messaдes delivered

messaдes delivered
(2)

The core algorithms of FinalComm determine (i) when to send
a message to another node and (ii) when a node should delete a
message that was sent. Other two important algorithms are part of

the process of (iii) creating and (iv) updating communities. All of
them should be seen from a single node’s perspective. Please note
that all these algorithms assume that nodes are fully cooperative.

3.1 Algorithms to send or delete messages
Below, two algorithms used to determine when to send a message
to another node and when to delete a message that was sent are
presented.

Algorithm 1: When should a node send a message to
another node? This algorithm is called when two nodes meet. It
is responsible for checking if the messages that are stored in the
nodes’ buffers should be sent to the other node.

Consider, for instance, that node Ameets node B and A has mes-
sages in its buffer. For every messagem, nodeA uses this algorithm
to take forwarding decisions. First, node A checks (or verifies) if
node B is the destination ofm. If so, it forwardsm to B provided
that B does not already has it. If B is not the destination,A performs
other verifications. This first verification is also performed by other
routing protocols such as BubbleRap, dLife and dLifeComm. Second,
node A verifies whether B has alreadym in its buffer. If B hasm
on its buffer, A does not sendm to B. Otherwise, A continues the
verification. This second verification is also performed by dLife
and dLifeComm. Third, A verifies whether just one of the messages
belongs to the same community as the destination node ofm. If
it is B, A sendsm to B, however if it is A, A keepsm in its buffer.
This third verification is also performed BubbleRap. Forth, if both A
and B belong to the same community as the destination node ofm,
the number of times that each one has met with the destination is
computed. Node A only forwardsm to B if B has encountered the
destination more times than it. If both A and B belong to different
communities and neither of these communities is the same as the
community of the destination node ofm, it is computed the number
of times that each node has met nodes from the destination’s com-
munity. Node A only forwardsm to B, if A has met that community
less times. The forth step is new and therefore different from the
other protocols, and is considered the core of the FinalComm proto-
col. Last, and similarly to BubbleRap, the global centrality (degree
centrality) of the nodes is computed. After that computation, node
A replicatesm to B if B has higher global centrality than it. Oth-
erwise, A decides just to keepm in its buffer. Please note that the
latter is only used if both nodes belong to different communities
that are not the same as the destination node’s community, and at
least one of the nodes did not have any contacts with other nodes.
That is, it is only used in the beginning of and not many times
thereafter.

Figure 1 shows a block diagram of Algorithm 1.

Algorithm 2: When should a node delete a message
that was sent? After a node have decided that it should send
a message to another node, it has to verify if that exact message
needs to be deleted or not from its buffer. In FinalComm, a node
will only delete a message from its buffer if that message has been
relayed by any of the mechanisms described in Algorithm 1 except
when the message is relayed using the global centrality feature. In
that case, the node will never delete the message from its buffer.
It is important to mention this mechanism because it is partially

responsible for FinalComm’s overhead. However, a message will
also be deleted from a buffer if it reaches the Time-to-Live (TTL)
established or if a new message arrives and the buffer is full. In this
last case, older messages in the buffer are dropped until there is
enough room for the new one.

3.2 Algorithms to create and update of
communities

As previously mentioned, previous work [4, 11] leveraged on the
k-clique algorithm to create communities. However, they do not
consider that communities can change over time, that is, they only
consider that nodes can join a community meanwhile they should
also be able to leave them. In order to better describe what happens
in real life, a different although simpler, mechanism to build com-
munities and keep them updated was proposed and implemented
in FinalComm.

The mechanism works as follows: when two nodes meet, before
they start exchanging messages they need to do some verifications
and to share information about the communities they know. The
mechanism is composed of two algorithms that are presented below:

Algorithm 3: The Creation of Communities. In this algo-
rithm, nodes A and B start by verifying if each node that belongs to
their communities should remain in the community by means of the
commfamiliar threshold and by taking into account the percentage
of contact time between each one of them and the node. If it happens
that the node does not meet this threshold criterion, nodes A and B
remove the node from their communities. Then, each node does a
similar check to decide if the other node that it met should be part
of its community. To do so, nodes A and B consider the percentage
of contact time between them and the node, and compare the result
with the commf amiliar threshold. NodeA only adds B if that result
is greater or equal to the threshold and vice-versa. Finally, nodes
change their network’s view and the most recent data will be kept
by each one in their known communities. To see who has the most
recent view of a community in their known communities, nodes A
and B verify the last time that that information was updated. Older
data is deleted. After some time, a connection between two nodes
will be lost. When that happens, it is necessary to update some
information about each node’s perspective of its community, which
is done by the next algorithm.

Algorithm 4: The Updating of Communities. The process of
updating communities is identical to what happens on the previous
algorithm when calculating the percentage of contact time between
nodes A and B and another node. In Algorithm 4, node A verifies
whether B should be added or remain in its community. It can
happen that node A sees node B as part of its community, however
node B does not due to having different contacts with other nodes.
Therefore, their total contact time with nodes will be different.
However, this can describe what happens in some online social
networks nowadays. For example, on Facebook one person can be
followed by another without adding or also following her back, and
still be able to interact with each other.

3.3 The dynamic parameter tuning approach
Social-based routing protocols that use the community metric have
some parameters related to the way cluster or communities are
built that need to be tuned in order to achieve the best possible
performance. However, it is only possible to detect the best values
for these parameters if multiple simulations are performed, which is
not practical in most cases. Moreover, even if these parameters are
found, all nodes will be using those same values without exceptions.
What if these values are not the most adequate ones for every node?

For FinalComm, the parameter that requires tunning is the comm-
familiar threshold. In order to understand if there is the possibility
to create a dynamic mechanism to adjust the commfamiliar param-
eter, minor changes were made to Algorithm 3 that is responsible
for creating communities. In this new approach, nodes will start
by having the commfamiliar threshold set to a certain value that
works well. Then, the goal is to give nodes a chance to regularly
change this threshold after a period of time. Two different periods
of update time were considered: half a day and a day. In practice,
when the update time comes, a node will check: how many nodes it
actually has on its community and how many other nodes it knows
that exist in the network. Then, with that information, the node
computes its community view metric that is given by

community view =
nodes in community

total nodes knwon
× 100

If this metric is inferior to a certain percentage, the commfamiliar
threshold should be increased in order to add more nodes to its
community. If the metric is superior to a certain percentage, the
number of nodes in its community should decrease and therefore
the commfamiliar threshold will be increased. The ranges of per-
centages considered to decide if there is any change are 15%-20%,
20%-25%, 25%-30%, 30%-35% and 35%-40%. When the commfamiliar
threshold is being updated, if its value is inferior to 2.0%, the in-
crements and the decrements will be 0.1%. Otherwise, 1.0% will be
used. Therefore, the commfamiliar threshold can never take values
less than 0.1% and greater than 100%.

4 SIMULATION MODEL
FinalComm was implemented in the Opportunistic Network Envi-
ronment (ONE) simulator [5]. Different simulation scenarios con-
sisting of two synthetic mobility models were considered. It is
assumed here, as in most networks of interest, that there is some
social structure between the nodes participating in the network.
The simulation time was set to 11.5 days with an update interval
of 1.0 s. The warmup time was set to 1 day. The warmup time
corresponds to a simulation interval, from the beginning of the
simulation, in which the network’s statistics are not taken into
account. This particular warmup time of one day was chosen to
analyze if protocols that use the community property and the ones
that are based on daily routines could benefit from it. It is expected
that one day will be enough to ensure that communities are already
created and daily routines are detected.

The message size was set to 200 kB. Only two nodes within
range could communicate with each other at a time. The commu-
nication range between nodes was 10 m, and the communication
was bidirectional at a constant transmission rate, for Bluetooth

and Wi-Fi interfaces, of 2 Mbit/s and 10 Mbit/s, respectively. Every
60 s, a source node randomly chosen generated one message to a
randomly chosen destination.

The following mobility models were considered:

Shortest-path Map-Based Movement (SPMBM). SPMBM consisted
of a network with 80 pedestrians, 40 cars and 6 trams over the
downtown area of Helsinki, Finland. Pedestrians were moving at a
speed varying between 0.5 to 1.5 m/s. Cars and trams were moving
at a speed varying between 2.7 to 13.9 m/s and 7 to 10 m/s, respec-
tively. The TTL attribute of each message was 5 h. The pedestrians
and cars had a buffer size of 5 MB. Trams had a buffer size of 50
MB for DTN traffic.

Working Day Movement (WDM). WDM [2] consisted of a net-
work with 150 pedestrians and 20 buses over the midtown area of
Manhattan, United States of America. There were 10 offices and
the working day length was 8 h. The probability of going shopping
after work was 50% and there were 20 meeting points. Pedestrians
and buses were moving at a speed varying between 0.8 to 1.4 m/s
and 7 to 10 m/s, respectively. The TTL attribute of each message
was approx. 24 h. All nodes had a buffer size of 5 MB for DTN traffic.

5 SIMULATION RESULTS
In this section, several simulation results describing the perfor-
mance of FinalComm are presented. For each setting, i.e., protocol-
configuration parameter pair, five independent simulations using
different message generation seeds were conducted, and the results
averaged, for statistical confidence. FinalCommwas compared with
well-known DTN routing protocols [8]: one traditional routing pro-
tocol, namely Epidemic, and three social-based routing protocols,
namely BubbleRap, dLifeComm and dLife.

The performance of FinalComm was evaluated according to the
following metrics: delivery ratio, overhead ratio, average latency
and average hop count. The delivery ratio is a key performance
indicator as it tells the percentage of successfully received packets of
all sent. The overhead ratio is the number of message transmissions
for each delivered message. The average latency corresponds to
the average time that a message takes from the node that creates
it to its destination node. The average hop count corresponds to
the average number of hops that a message needs to take before
reaching the destination.

The dynamic parameter tuning approach (hereafter dynamic
mechanism) will be also evaluated aiming at understanding if nodes
that are using FinalComm benefit from having different values
of the commfamiliar threshold and from updating this threshold
automatically.

In protocols that uses the community metric to relay messages,
it will be also analyzed the number of communities and the average
number of nodes per community at the end of each simulation.

5.1 SPMBM
Figure 2 compares the performance of all the routing protocols
considered in terms of delivery rate, overhead ratio, average latency
and average hop count for the SPMBM scenario. For each protocol,
the best performance values were selected for the comparison.

There is also a comparison between the performance obtained
with (i.e., Normal) and without warmup time (i.e., Warmup).

In the SPMBM scenario, FinalComm was able to deliver more
messages than the others routing protocols. In fact, the difference is
significant. FinalCommwas able to deliver 13% more messages than
dLife, which came second in terms of delivery rate (see Figure 2(a)).
The reason why dLife and dLifeComm did not perform better than
FinalComm might have been related to the fact that there were no
daily routines in this scenario. One could argue that this scenario
is not the ideal one for those two protocols.

In terms of overhead ratio (see Figure 2(b)), FinalComm also
performed considerable better than all the other protocols. It only
needed on average approximately 5 replicas of each delivered mes-
sage to achieve the highest delivery rate meanwhile BubbleRap,
which comes second, needed almost 60 message replicas. There
is also a huge difference between BubbleRap and dLifeComm in
terms of overhead ratio. Both protocols use the same algorithm to
build communities and this algorithm can be in part responsible
for the overhead. It is important to remember that the k-clique
algorithm does not remove nodes from communities. Aside from
the way protocols decide how to forward messages, how they de-
cide to delete them can also significantly influence the protocol’s
overhead. Overall, FinalComm tends to be very precise in the way
it deletes messages. The way all the proposed algorithms work
together within FinalComm allowed it achieve the highest delivery
rate with the smallest overhead ratio.

From Figure 2(b) and Figure 2(c) it is possible to see an interesting
fact that also supports the findings on the last paragraph. With the
exception of Epidemic, the order in which protocols are placed
in terms of how high the average latency are, corresponds to the
inverse order on how low the overhead ratios are, even though
this relation is not proportional. For achieving a low overhead, the
messages may have to spend more time at nodes’ buffer, i.e., routing
protocols should have mechanisms to ensure that the next relay
node that receives the message will be better than the current one
and in that case the messages could be deleted more often from the
buffers.

When comparing Figure 2(a) to Figure 2(d), the order in which
protocols appear is the same, except for Epidemic. For a high de-
livery rate comes a higher number of hops. At first sight, more
hop counts could lead to more overhead, but as state before, the
algorithms used by FinalComm to relay and delete messages en-
sures that that does not happen. Therefore, more hops can lead to a
better delivery rate, hence to have more hops the overhead should
be controlled. Otherwise, more overhead will lead to less space in
buffers and more removed messages, which affects the delivery
rate.

In none of the presented figures there was a case in which the re-
sults for a warmup time of one day, which is significant, would ben-
efit the protocol. One may conclude that communities are formed
very fast and protocols can efficiently relay messages even with
partially formed communities.

Table 1 presents the number of detected communities and the
average number of nodes per community at the end of simulations
of three different protocols, namely BubbleRap, dLifeComm and
FinalComm. In BubbleRap there are many communities, although
each has almost on average 1 node meanwhile in dLifeComm the

(a) Delivery rate (b) Overhead ratio

(c) Average Latency (d) Average Hop Count

Figure 2: Delivery rate, overhead ratio, average latency and average hop count for all the routing protocols considered in the
SPMBM scenario

Table 1: The number of communities and the average number of nodes per community for the SPMBM scenario

Protocol Number of Communities Average Nodes per Community

BubbleRap 115.00 ± 2.77 1.22 ± 0.56
dLifeComm 1.00 ± 0.00 126.00 ± 0.00
FinalComm 126.00 ± 0.65 105.20 ± 18.37

opposite happens. The latter case explains why the k-clique algo-
rithm should have a feature to remove nodes from communities.
Depending on the parameters such as k , it may only exist one com-
munity with all the nodes or many communities composed by a
single node each. Since FinalComm uses a different algorithm to
build communities, every node has a unique community with some
nodes.

Finally, in order to evaluate the dynamic mechanism, the comm-
familiar threshold was initially set to 0.50%. The best case was
detected when the update time took the value of 43200 seconds and
when the nodes were trying to populate their communities with 35
to 40% of all existing nodes. In this case, the dynamic mechanism
was able to achieve a delivery rate of 84.15% with an overhead
of 10.37. The dynamic mechanism was able to deliver an identi-
cal number of messages compared to the best case of FinalComm
without this mechanism. However, the overhead increased approx-
imately 100%. The latter was related with the constant changing
in the commfamiliar threshold values, which introduced one more

hop in the average hop count. Overall, the mechanism performed
well in this scenario.

5.2 WDM
Figure 3 compares the performance of all the routing protocols
considered in terms of delivery rate, overhead ratio, average latency
and average hop count for theWDM scenario. For each protocol, the
best performance values were selected for the comparison. There
is also a comparison between the performance obtained with (i.e.,
Normal) and without a warmup time (i.e., Warmup).

Even in scenario where the movement patterns represented daily
routines, FinalCommwas able to deliver more messages than all the
others routing protocols considered (see Figure 3(a)). FinalCommde-
livered approximately 23% more messages than dLifeComm, which
came second in terms of delivery rate. With or without daily rou-
tines, the proposed protocol outperformed all the other routing
protocols.

(a) Delivery rate (b) Overhead ratio

(c) Average Latency (d) Average Hop Count

Figure 3: Delivery ratio, overhead ratio, average latency and average hop count for all the routing protocols considered in the
WDM scenario

Table 2: The number of communities and the average number of nodes per community for the WDM scenario

Protocol Number of Communities Average Nodes per Community

BubbleRap 170.00 ± 0.00 51.89 ± 50.29
dLifeComm 41.50 ± 20.63 162.10 ± 21.02
FinalComm 170.00 ± 0.00 34.98 ± 18.55

In terms of overhead, FinalComm also performed much better
than the other protocols. It only needed on average approximately
9 replicas of each delivered message to achieve the delivery rate
mentioned above meanwhile dLife, which comes second, needed
almost 79 replicas. All the previous results refer to cases in which
no warmup time was considered. dLifeComm came in third place
with an overhead really close to that presented by dLife. Then, there
is also a big difference between BubbleRap and dLifeComm in terms
of overhead, i.e., twice in terms of magnitude. As expected, in the
last place with a huge overhead was Epidemic. Its overhead ratio
was approx. 667.

From Figure 3(a) and Figure 3(b), it is possible to see that for
the highest delivery rate comes a low overhead. Even though the
results are not proportional, the order in which protocols come in
terms of better delivery rate is approximately the opposite of the
overhead ratio.

From Figure 3(a), Figure 3(c) and Figure 3(d), one may conclude
that the highest delivery rate achieved had the highest average
latency and the highest average hop count associated, excluding
the case of Epidemic. Figures 3(c) and 3(d) show that messages in
FinalComm took more time at nodes’ buffers and also crossed more
nodes on average. Thus, by having a good mechanism to control
the protocol’s overhead, crossing more nodes does not necessarily
brings the delivery rate down. Epidemic is the best example to show
how important is to control the overhead.

In general, no protocol performed well in the WDM scenario
since the delivery rate was too low if compared to the SPMBM
scenario. Approximately, only half of the messages were delivered
in the best cases identified. A way to improve all the delivery rates
could be to increase both messages’ TTL and nodes’ buffers.

Similarly to the SPMBM scenario, in none of the presented figures
there was a case in which the results for a warmup time of one day,
which is significant, benefited the protocol.

Table 2 presents the number of detected communities and the
average number of nodes per community at the end of the simula-
tions of three different protocols, namely BubbleRap, dLifeComm
and FinalComm.

In BubbleRap and FinalComm, every node had its unique com-
munity and the average number of nodes per community was 51.89
and 34.98, respectively. However, the confidence interval related to
the average number of nodes per community in BubbleRap seemed
to indicate that there were some communities with a very low
and high number of nodes. In dLifeComm, there was only an aver-
age number of 41.50 communities and each one had almost all the
existing nodes in this scenario.

Similarly to SPMBM, to evalute the dynamic mechanism, the
commfamiliar threshold was initially set to 0.50%. The best case was
also detected when the update time took the value of 43200 seconds,
and when the nodes were trying to populate their communities
with 35 to 40% of all existing nodes. In this case, the dynamic
mechanism was able to achieve a delivery rate of 55.54% with an
overhead of 11.33. When comparing FinalComm with and without
this mechanism, it is possible to see that the delivery rates and
overhead ratio were similar.

6 CONCLUSIONS
This article proposes FinalComm, which is a social-based routing
protocol for DTNs. In general, FinalComm outperformed other
routing protocols for the scenarios and routing metrics considered,
that is, it was always the protocol with the highest delivery rates and
lowest overhead ratio, even in scenario consisting of daily routines.
FinalComm presented average gains of 20.86% and 41.88% in terms
of delivery ratio in comparison with other routing protocols for the
SPMBM and WDM scenarios, respectively.

In FinalComm, a node delivered more messages if the communi-
ties were not small. Simulation results showed that nodes should
have a community composed by at least 30% and 7% of existing
nodes in order to achieve the best performance possible for the
SPMBM and WDM scenarios, respectively. However, a drawback of
reducing the number of nodes per community was that each node
had to carry messages for a longer time.

Simulation results also showed that the the dynamic mechanism
was able to achieve similar results when compared to the best
cases without the mechanism. However, the overhead increased
significantly, although being that the price to pay. The dynamic
mechanism performed better when the update time was adjusted
every half a day with percentage interval of 35% to 40%, which
corresponds to the fraction of total nodes a community should
contain. It is also important to say that the node’s commfamiliar
threshold only converged to its final value after some days. Overall,
the dynamic mechanism was a good approach and it showed that
nodes do not have to share the same value of the commfamiliar
threshold in order to achieve a good protocol’s performance.

An extensive analysis of the dynamic mechanism with multiple
other time periods and percentage intervals in several other scenar-
ios was left for future work. It would be also interesting to analyse

the influence of the load and the number of nodes on the scenarios
considered. An evaluation of the performance of FinalComm in
other scenarios such as those based on real traces was also left for
future work.

ACKNOWLEDGMENTS
This work was partially supported by Fundação Calouste Gul-
benkian and by national funds through Fundação para a Ciência e
a Tecnologia (FCT) with reference UID/CEC/50021/2013.

REFERENCES
[1] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman.

2001. Search in power-law networks. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics 64, 4 II (sep 2001), 461351–461358. DOI:https://doi.org/
10.1103/PhysRevE.64.046135 arXiv:cs/0103016

[2] Frans Ekman, Ari Keränen, Jouni Karvo, and Jörg Ott. 2008. Working Day
Movement Model. In Proceedings of the 1st ACM SIGMOBILEWorkshop onMobility
Models (MobilityModels ’08). ACM, New York, NY, USA, 33–40. DOI:https://doi.
org/10.1145/1374688.1374695

[3] Pan Hui and Jon Crowcroft. 2007. How small labels create big improvements. In
Proceedings - Fifth Annual IEEE International Conference on Pervasive Computing
and Communications Workshops, PerCom Workshops 2007. 65–70. DOI:https:
//doi.org/10.1109/PERCOMW.2007.55

[4] Pan Hui, Jon Crowcroft, and Eiko Yoneki. 2011. BUBBLE Rap: Social-Based
Forwarding in Delay-Tolerant Networks. IEEE Transactions on Mobile Computing
10, 11 (Nov. 2011), 1576–1589. DOI:https://doi.org/10.1109/TMC.2010.246

[5] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. 2009. The ONE simulator for
DTN protocol evaluation. In Proceedings of the 2nd international conference on
simulation tools and techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 55.

[6] Maurice J Khabbaz, ChadiMAssi, andWissam F Fawaz. 2012. Disruption-Tolerant
Networking: A Comprehensive Survey on Recent Developments and Persisting
Challenges. IEEE Communications Surveys & Tutorials 14, 2 (jan 2012), 607–640.
DOI:https://doi.org/10.1109/SURV.2011.041911.00093

[7] Anders Lindgren, Avri Doria, and Olov Schelén. 2007. Probabilistic routing in
intermittently connected networks. Technical Report. RFC 6639. http://datatracker.
ietf.org/doc/rfc6639

[8] Naércio Magaia, Carlos Borrego, Paulo Pereira, and Miguel Correia. 2017.
PRIVO: A PRIvacy-preserVing Opportunistic routing protocol for Delay-Tolerant
Networks. In IFIP Networking 2017. http://dl.ifip.org/db/conf/networking/
networking2017/1570333245.pdf

[9] Naércio Magaia, Alexandre P. Francisco, Paulo Pereira, and Miguel Correia. 2015.
Betweenness centrality in Delay Tolerant Networks: A survey. Ad Hoc Networks
33 (2015), 284 – 305. DOI:https://doi.org/10.1016/j.adhoc.2015.05.002

[10] Naércio Magaia, Alexandre P. Francisco, Paulo Pereira, and Miguel Correia. 2015.
Betweenness centrality in Delay Tolerant Networks: A survey. Ad Hoc Networks
33 (2015), 284 – 305. DOI:https://doi.org/10.1016/j.adhoc.2015.05.002

[11] Waldir Moreira, Paulo Mendes, and Susana Sargento. 2012. Opportunistic
routing based on daily routines. In 2012 IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks, WoWMoM 2012 - Digital
Proceedings. IEEE, 1–6. DOI:https://doi.org/10.1109/WoWMoM.2012.6263749
arXiv:arXiv:1407.8368v1

[12] Mark EJ Newman. 2004. Analysis of weighted networks. Physical Review E 70, 5
(2004), 056131. DOI:https://doi.org/10.1103/PhysRevE.70.056131

[13] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering
the overlapping community structure of complex networks in nature and society.
Nature 435, 7043 (jun 2005), 814–818. DOI:https://doi.org/10.1038/nature03607
arXiv:physics/0506133

[14] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
2005. Spray and wait: an efficient routing scheme for intermittently connected
mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-
tolerant networking. ACM, 252–259.

[15] Amin Vahdat and David Becker. 2000. Epidemic routing for partially connected ad
hoc networks. Technical Report. Technical Report CS-200006, Duke University.

[16] K. Wei, X. Liang, and K. Xu. 2014. A Survey of Social-Aware Routing Protocols
in Delay Tolerant Networks: Applications, Taxonomy and Design-Related Issues.
IEEE Communications Surveys Tutorials 16, 1 (First 2014), 556–578. DOI:https:
//doi.org/10.1109/SURV.2013.042313.00103

[17] Ying Zhu, Bin Xu, Xinghua Shi, and Yu Wang. 2013. A survey of social-based
routing in delay tolerant networks: positive and negative social effects. IEEE
Communications Surveys & Tutorials 15, 1 (2013), 387–401.

