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ReFIoV: A Novel Reputation Framework for
Information-Centric Vehicular Applications

Naercio Magaia and Zhengguo Sheng

Abstract—In this article, a novel reputation framework for
information-centric vehicular applications leveraging on machine
learning and the artificial immune system (AIS), also known
as ReFIoV, is proposed. Specifically, Bayesian learning and
classification allow each node to learn as newly observed data of
the behavior of other nodes become available and hence classify
these nodes, meanwhile, the K-Means clustering algorithm allows
to integrate recommendations from other nodes even if they
behave in an unpredictable manner. AIS is used to enhance mis-
behavior detection. The proposed ReFIoV can be implemented
in a distributed manner as each node decides with whom to
interact. It provides incentives for nodes to cache and forward
others’ mobile data as well as achieves robustness against false
accusations and praise.

The performance evaluation shows that ReFIoV outperforms
state-of-the-art reputation systems for the metrics considered.
That is, it presents a very low number of misbehaving nodes
incorrectly classified in comparison to another reputation scheme.
The proposed AIS mechanism presents a low overhead. The
incorporation of recommendations enabled the framework to
reduce even further detection time.

Index Terms—Reputation, Routing, Caching, Bayesian learn-
ing, Danger Theory, Vehicular Delay-Tolerant Networks.

I. INTRODUCTION

The forthcoming vehicular network infrastructure is go-
ing to increase the ubiquitousness of the Internet and the
general connectivity by incorporating every object and form-
ing an intelligent vehicular transportation system (ITS). Us-
ing advanced vehicular communications, that is, vehicle-to-
everything (V2X), research communities have the possibility
of reaching a comprehensive variety of objectives efficiently.
Examples of vehicular applications for such a promising com-
bination ranges from providing assistance to drivers and road
safety, to mapping road status and multimedia content sharing.
However, the amount of data required for such applications
will continue to increase along with the need to minimize
latency as a result of an increasing number of connected
vehicles as well as more evolved use cases. Although the
amount of data stored and processed centrally may be adequate
for some non-critical use cases, it can be unreliable and slow,
particularly when a large number of vehicles try to access a
given service at the same time.
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The development of 5G mobile technology enables broad
coverage and high bandwidth to provide multimedia content
downloading services for the moving vehicles, even though
most probably being overloaded and congested especially
during peak times and in urban central areas with the increase
of the services and user demands [1]. Consequently, 5G-
based vehicular communications will face extreme perfor-
mance hits in terms of low network bandwidth, missed calls,
and unreliable coverage. However, the opportunistic contacts
enabled by V2X communications can provide high bandwidth
for the transmission of data as well as enable vehicles to
build relationships with other objects they might come into
contact, which forms the basis of Information-Centric Internet
of Vehicles (I2oV).

Motivated by content caching at the edge of 5G networks
(e.g., at the Radio Access Networks - RANs) that would help
relieve backhaul congestion and meet peak traffic demands
with lower service latency, service providers can postpone a
big number of data transmissions to an I2oV consisting of a
5G-based Vehicular Delay-Tolerant Networks (VDTNs) [2].
That is, use in-network caching, by benefiting from the delay-
tolerant feature of some non-real time vehicle applications.
Albeit the VDTN approach may cause an acceptable delay in
the dissemination of data, it assists in handling the volatile
traffic demands and foreseen mobile data increase currently
and in the near future. Vehicular applications such as Wireless
Remote Software Updates (WRSUs) and traffic map updating,
are one of the most critical challenges in the automotive
ecosystem and can benefit from such I2oV. Even though
routing protocols have been proposed in the literature for
VDTNs [3], several stimulating research problems exist in
providing efficient data access to moving vehicles, despite
the importance of data accessibility in many mobile applica-
tions. Therefore, appropriate network design and/or incentive
schemes are needed to ensure that data can be promptly
accessed by requesters in such cases.

Cooperative caching in VDTNs allows for allocation and
coordination of cached data between nodes and to reduce
delay to access data. In addition, and according to [4], an
information-centric approach is well suited to the nature
of usual vehicular applications as these applications benefit
from in-network and distributed replication mechanisms for
data caching. Content caching is also beneficial for inter-
mittent on-the-road connectivity and can speed up data re-
trieval through content replication in several nodes. Neither
Information-Centric Networking (ICN) [4] nor VDTN relies
on the paradigm of end-to-end communications, but both rely
on in-network storage. However, nodes in such environments
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might misbehave due to the fact of them being controlled by
rational entities. Node misbehavior can affect meaningfully the
performance of the network [5].

Routing as well as caching decision-making becomes much
easier when reputation and trust are used. Reputation systems
[6] are those where each node uses other nodes’ reputation
when deciding to interact. In a distributed reputation system,
ratings of nodes are kept in a decentralized manner and the
evaluation of reputation is based on parts of information.
Thus, this article proposes a novel reputation framework for
information-centric vehicular applications such as content dis-
semination. ReFIoV utilizes machine learning [7] and artificial
immune system (AIS) [8] techniques to address the data
accessibility problem, i.e., the routing problem of vehicular
delay-tolerant applications as well as the caching problem
of information-centric vehicular applications by providing
incentives and hence stimulating nodes’ cooperation.

The contributions of this article are summarized as follows:
• ReFIoV, a novel reputation framework, which leverages

Bayesian learning, K-Means clustering, and Danger The-
ory to provide incentives for caching in information-
centric approaches as well as routing in vehicular delay-
tolerant approaches aiming at improving data accessibil-
ity of the moving vehicles, is proposed. ReFIoV presents
a very low number of misbehaving nodes incorrectly
classified.

• A personalized similarity metric that determines the dif-
ference in opinions resulting from direct experiences over
a common set of interacting nodes is proposed. It is used
to cluster nodes using the K-Means Clustering algorithm,
which allows integrating other nodes’ recommendations
hence making the framework resilient against false accu-
sations and praise as a result of an unpredictable nodes’
behavior. The integration of recommendations reduces in
further our framework’s detection time.

• A biologically inspired mechanism from AIS to enhance
misbehavior detection is proposed. The additional over-
head caused by the mechanism is low.

It is our convictions that the use of incentive schemes
in I2oV applications is yet an open research problem hence
addressed in this article.

The remainder of this paper is as follows. Section II presents
related work. Section III presents preliminaries and back-
ground. Section IV presents the ReFIoV scheme. In Section
V, the performance evaluation of ReFIoV is presented. Finally,
Section VI presents concluding remarks and future work.

II. RELATED WORK

A. ICNs

ICNs [1], in contrast to the host-centric paradigm that is
based on perpetual connectivity and the end-to-end principle,
focus on the distribution and retrieval of “named information”
(that is, content or data). ICN is based on the publish-subscribe
paradigm and the concepts of naming and in-network caching.
Content may be distributed either in caches along the delivery
path(s) or in any cache within the network. Network connectiv-
ity may also be intermittent in ICNs. Therefore, there are clear

synergies between ICNs and VDTNs [9] as both do not depend
on the paradigm of end-to-end communications. Specifically,
both approaches rely on in-network storage, adopt late binding
of names to locations because of the possibly big interval
among the generation of request and response, and consider
that data can be present in the network for prolonged time
periods. Nevertheless, there are cases where the information-
centric paradigm is not suitable for use in vehicular delay-
tolerant environments such as when information is not the
main communication object transmitted, and when a single
destination is continuously used for the reception of informa-
tion, which may not guarantee that independent information
objects are identified and routed. In summary, ICN can be used
to enhance VDTN’s data dissemination and traffic monitoring
applications leveraging on mobile cloud and social networking.

B. Reputation-based incentive schemes

The use of reputation-based incentive schemes has been
extensively studied in wireless networks such as Mobile Ad
Hoc Networks (MANETs) and is under research in VDTNs
and ICNs. Reputation-based routing protocols for MANETs
benefit from existing end-to-end routing paths between a
source and destination nodes to monitor routing behaviors of
intermediate nodes along those paths, conversely to VDTNs
that are characterized by long and variable delays, high error
rates, and intermittent connectivity. For instance, the watchdog
(or monitor), on the one hand, is used at the source node to
count the arrival of ACKs associated with data packets that
were sent as an indicator of good behavior of intermediate
nodes. On the other hand, it is used to monitor directly wireless
channels to check if the next-hop node properly forwarded the
data packet. However, since end-to-end connectivity between
a source and destination nodes might never exist, the success
probability of techniques such as channel monitoring or end-
to-end ACKs in VDTNs is much lower than for MANETs.

Some reputation-based incentive schemes have been pro-
posed for DTNs and VDTNs. The authors of [10] proposed
a cooperative watchdog system aiming at supporting selfish
nodes detection in VDTNs. A reputation score is assigned to
a node whenever it takes part in a contact opportunity. As
new observations are made, the proposed classification module
does not learn. The authors of [11] proposed a reputation-
based extension to the Context-Aware Routing [12] protocol
to address the problem of black-holes. The cooperation evalu-
ation phase is dependent on the reception of acknowledgment
messages.

In [13], [14], Bayesian approaches leveraging on the
Dempster-Shafer Belief Theory [15] were proposed. The trust-
based framework proposed in [13] can be integrated with
single-copy data forwarding protocols. It uses a watchdog
component and a special message to monitor the forwarding
behavior of a node. If sparse DTNs are considered, the
proposed special message will take a longer time to reach
its intended node, hence, not being suitable. In [14], which
is similar to [16] in the sense that each node also manages
evidence of its reputation and shows it whenever necessary,
two concepts have been introduced, namely self-check and
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community-check. They were defined for reputation evaluation
in relation to the forwarding competency of the candidate and
the sufficiency of the evidence that the node presents, and for
speeding up reputation establishment and forming consensus
views towards targets in the same community. This approach
presents a slow convergence.

The authors of [17] proposed a reputation mechanism for
opportunistic networks that uses social-network information to
detect and penalize misbehaving nodes, therefore, stimulating
them to participate in the network. In [18], [19], social trust
routing schemes were proposed. In [18], the trust routing based
on social similarity scheme is built on the observation that
nodes move around and contact each other according to their
common interests or social similarities. In [19], the social trust
model exploits the contact status, forwarding ability, and com-
mon attributes. In addition, a trust-based routing algorithm and
buffer management algorithm for the secure routing strategy
that considers network coding in data dissemination was also
proposed. The approaches in [17], [18], [19] are limited to
social-based DTNs.

The authors of [20] proposed a probabilistic misbehavior
detection scheme for secure routing. A trusted authority, which
is periodically available, judges nodes’ behavior based on the
collected routing evidence and performs probabilistic checks.
A trusted third party to judge and punish nodes based on
their behavior is required. In [21], a distributed mechanism for
malicious node detection and iterative trust management were
proposed. It uses an iterative trust and reputation mechanism
that enables each node to evaluate others based on their
past behavior. This approach presents large communication
overhead in order to gather sufficient rating information in
DTN environments.

In [22], a previous work of ours, a changed Bayesian
approach for representation and update of reputation and
trust, and for integration of second-hand information was
proposed for DTNs. It evaluates the participation of each
node in the network as well as each node honesty is in the
reputation system. In [1], a robust and distributed incentive
scheme for collaborative caching and dissemination in content-
centric cellular-based Vehicular Delay-Tolerant Networks was
proposed. Despite both addressing different problems, that is,
providing incentives for routing [22] and in-network caching
[1], it is unclear the advantages of using second-hand infor-
mation in these approaches. Their performance evaluation was
not exhaustive and these approaches were not compared with
state-of-the-art reputation systems. Furthermore, the evaluation
of [1] did not consider queries generation patterns that are
common in content distribution applications.

On the other hand, ReFIoV is a novel reputation framework
for information-centric vehicular applications such as content
dissemination. It leverages on AIS to enhance misbehavior
detection. The performance evaluation considered a much
more elaborate attack where colluding vehicles oscillated their
behavior over time. In addition, more simulation scenarios
were considered, and ReFIoV was compared to state-of-the-
art reputation systems. The majority of previous works only
proposed incentive schemes for routing in DTNs and VDTNs.
With the overwhelming increase in the volume of data required

Fig. 1. An illustration of an I2oV content dissemination application integrat-
ing a 5G network and V2X opportunistic communications.

by 5G vehicular applications, incentives for content dissem-
ination are crucial hence proposed in this article. Providing
incentives to information-centric vehicular applications is yet
an open research problem.

III. PRELIMINARIES AND BACKGROUND

A. Assumptions and notations

a) Notation: A notation similar to [23] is used. A VDTN
is modeled as a time-varying graph G = (V,E, T , w) where
each vertex v ∈ V corresponds to a node in the network and
each edge e = (i, j) ∈ E represents the relationship between
these nodes (i.e., that these nodes have encountered before).
The relations among nodes are assumed to take place over
a time span T ∈ T known as the lifetime of the network;
w : E×T → [0, 1] is called weight function and indicates the
strength of an edge at a given time.

Let a footprint of G from t1 to t2 be defined as a static graph
G[t1,t2) = (V,E[t1,t2)) such that ∀e ∈ E, e ∈ E[t1,t2) ⇐⇒
∃ t ∈ [t1, t2) , w (e, t) ∈ [0, 1], i.e., the footprint aggregates
all interactions of a given time window into static graphs.
Let τ = [t0, t1) , [t1, t2) , . . . , [ti, ti+1) , . . . (where [tk, tk+1)
can be noted τk) be the lifetime T of the time-varying
graph partitioned in sub-intervals (or time-slots). The sequence
SF (τ) = Gτ0 , Gτ1 , . . . is called sequence of footprints of G
according to τ .
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Let H = (VH , EH) be a subgraph of G = (V,E), denoted
H ⊂ G, if and only if VH ⊂ V and EH ⊂ E. H is a local
subgraph with respect to a vertex v ∈ V , if and only if all
vertices in the subgraph can be directly reached from v.

b) Scenario: Consider the network topology in Figure
1, where vehicles and pedestrians move around the city and
the set up RSUs provide coverage over a certain area. RSUs
are positioned at road intersections similarly to what is done
by current optimal placement algorithms [24]. RSUs and
pedestrians are connected through wired and wireless links
to 5G RANs, respectively, which are also connected to the
content server on the Internet. Vehicles needing mobile data
such as software or traffic map updates can send their requests
to the content server via V2X communication links. The
content server sends the requested data to the 5G RAN, and
from the 5G RAN to the RSUs and pedestrian via the wired
and wireless links, respectively. It is assumed that the wired
links make available high bandwidth hence ensuring that the
requested data is delivered to RSUs prior to the opportunistic
communication between RSUs and vehicles. The data will
additionally be disseminated to the users in the vehicles that
requested it through opportunistic communication that occurs
when the vehicle moves into the communication coverage of
RSUs or pedestrians. Please note that the words vehicle and
node are used interchangeably throughout the article.

c) Node capability: Each node has a Unique IDentifier,
and it cannot be spoofed. Upon an encounter between two
nodes, a secure communication channel between the two is
used through cryptographic mechanisms that ensure confiden-
tiality.

d) Attack model: In the I2oV scenario depicted in Figure
1, vehicles, pedestrians and RSUs decide which contents to
cache and, for example, the RSUs proactively fetch these
contents via backhaul during off-peak times, and transmit the
contents to requesters during peak times. As a result, caching
offloads the network traffic during peak times and reduces
vehicular users’ average delay cost.

The 5G RAN aims to minimize its traffic load of serving
nodes by reducing the backhaul load and the transmission
cost. This objective is equivalent to maximizing the chances of
V2X communications in the network. The vehicles’ malicious
nature hence becomes the major obstacle for the 5G RAN to
achieve its objective. In an I2oV of misbehaving vehicles (i.e.,
malicious or socially selfish) as vehicles are owned or man-
aged by rational entities, each vehicle (or group of vehicles)
cares solely about the contents of its users. Specifically, each
vehicle only intends to cache the favorite contents of its users
hoping also that its neighbors can cache as many as possible
favorite contents of its users. Specifically, there are 6 contents
{1, 2, 3, ..., 6} on the content server of Figure 1. It is assumed
that each content is of a unitary size and the local cache of
each vehicle be able to store two contents. It is also assumed
that the ranking of content preferences of the users in vehicle
V1 and V5 are (1, 2, ..., 6), (6, 5, ..., 1), respectively. Certainly,
V1 will cache contents {1, 2} wishing also that its neighbors
will cache contents {3, ..., 6} whereas V5 will cache contents
{6, 5} hoping that its neighbors will cache contents {4, ..., 1}.
The latter resembles a black-hole attack as each vehicle will

most probably discard the contents of other vehicles. A similar,
however much more elaborate attack, is the gray-hole attack,
where each vehicle oscillates its behavior over time by caching
and discarding other vehicles’ contents. Black and gray-hole
attacks may cause duplicate caching and underutilization of
the storage space for all vehicles. Therefore, the 5G RAN
would be overloaded by vehicles’ requests and vehicles would
suffer from larger delays. In addition, active attacks, which are
characterized by an unauthorized party modifying the contents
of the message, are not considered because the wireless
network’s cryptographic techniques perform well under active
attacks.

B. Background

1) Danger theory: The biological immune system [25] is
a robust, complex and adaptive system, which has evolved
over millions of years, hence protecting the body from foreign
pathogens. It is able to classify the cells in the body as self-
cells or non-self (or foreign) cells. It achieves this with the
assistance of a distributed and intelligent task force that takes
action from a local and global viewpoint by means of its
network of messengers for communication.

AIS is a novel computational intelligence technique that is
inspired from immunology. Over the years, several concepts
from immunology have been extracted and applied for the
solution of real-world science and engineering problems.

According to classical immunology [25], an immune re-
sponse is activated if something non-self is encountered in the
body. Danger theory [8] offers a way of grounding the immune
response. According to the theory, the immune system does
not respond to non-self but to danger. That is, the immune
system reacts to danger instead of responding to foreignness.
The damage to cells indicated by affliction signals that are sent
out when cells die an abnormal death, conversely to planned
cell death, enables to measure danger. Antigens in the vicinity
are caught by antigen-presenting cells when an alarm signal
is sent out by a cell in distress. In essence, a danger zone is
established around the danger signal. Therefore, white blood
cells that produce antibodies matching antigens in the danger
zone become stimulated and go through the process of clonal
expansion, and do not get stimulated the ones that are too far
away or do not match.

2) Machine learning: Machine learning (ML) is set of
techniques that detect patterns in data by design. The discov-
ered patterns are used to forecast future data or to perform
additional types of decision making under uncertainty. The two
main fields of ML are supervised and unsupervised learning.
Supervised learning focuses on exact prediction, e.g., Bayesian
learning, whereas unsupervised learning aims to find compact
descriptions of the data, e.g., K-Means clustering.

a) Bayesian decision theory: Some fundamental con-
cepts of the Bayesian decision theory [26] are:
• All that is unknown but relevant for making a decision is

represented by θ and takes values on a state space Θ. The
available knowledge about θ, prior, is characterized by its
probability function π(θ). Hereafter, it is considered that
Θ is discrete.
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• The observed data, x, which are used to make decisions,
are most likely random depending on θ. This dependence
is expressed assuming that x is a sample of a random vari-
able X ∈ X whose probability function is conditioned
on θ, i.e., f (x|θ) that is also known as the likelihood
function.

• A decision rule δ(x) has to choose an action amongst a
set A of allowed decisions or actions. δ(x) is a function
from X → A thus specifying how actions or decisions are
chosen given x. D is the set of allowed decision rules.

• A loss function L (θ, a) : Θ×A→ R, specifies the cost
incurred if the unknown parameter is θ and the chosen
decision is a, thus quantifying the consequences of the
decisions.

A Bayesian decision problem can be formalized by the set
of elements {Θ, π (θ) , A, X ,L (θ, a) ,D, f (x|θ)} and is
considered solved if a decision rule δ(x) is chosen in a way
to obtain some kind of optimality criterion that is associated
with the loss function.

In Bayesian decision theory, the posterior expected loss,
conditioned on observed data x, is defined as

ρ (π (θ) , a|x) = E [L (θ, a) |x] =
∑
θ∈Θ

π (θ|x)L (θ, a) (1)

whereas via Bayes law,

π (θ|x) =
f (x|θ)π (θ)∑
θ∈Θ f (x|θ)π (θ)

(2)

where π (θ) is the prior density of θ, π (θ|x) is posterior
density for θ given x, f (x|θ) is the likelihood for θ based
on x so that in terms of θ, posterior ∝ likelihood× prior.

b) K-Means clustering: Clustering is the process of
grouping alike objects together. In similarity-based clustering,
the input to the algorithm is an N × N dissimilarity matrix
or distance D. Similarity-based clustering allows for easy in-
clusion of domain-specific similarity functions. A dissimilarity
matrix D is a matrix where d(a, a) = 0 and d(a, b) ≥ 0 is a
measure of “distance” between objects a and b. Some common
attribute dissimilarity functions are
• Squared (Euclidean) distance: d(a, b) = ‖a− b‖2
• l1 distance: d(a, ) = |a− b|
The K-Means algorithm works as follows: given an initial

set of K means, each observation is assigned to the cluster
whose mean has the least distance. Then, the new means
are calculated to be the centroids of the observations in the
new clusters. The assignments no longer change when the
algorithm converges.

IV. THE REFIOV SCHEME

ReFIoV is a novel reputation framework for information-
centric vehicular applications such as content dissemination,
leveraging on Bayesian learning and classification, and K-
Means clustering of ML and Danger Theory of AIS. ReFIoV
is distributed, robust and multi-purpose as it addresses both
routing and caching problems. It was built upon our previous
work [22]. However, differently from [22] that only addressed

the routing problem in delay-tolerant environments, our frame-
work also addresses the caching problem in information-
centric vehicular applications. The latter problem is equivalent
to two routing problems as there are the query and content
dissemination phases. As newly observed data about other
nodes become available, Bayesian learning and classification
allow the framework to learn and make decisions, meanwhile,
K-Means clustering algorithm allows to integrate recommen-
dations for other nodes. Danger theory is used to enhance
misbehavior detection.

There are three modules in ReFIoV: the reputation module
(that uses Bayesian learning and the biologically inspired
mechanism), the trust module (that uses the K-Means clus-
tering algorithm) and the decision module (that uses Bayesian
and nearest neighbor classifiers). Figure 2 shows the block
diagram of ReFIoV.

A. The modified Bayesian approach

Each vehicle considers that there is a given parameter, θ,
such that another vehicle misbehaves with probability θ, and
that the outcome is drawn independently at each observed data
x. Furthermore, each vehicle considers that there is a different
θ for every other vehicle. These parameters are unknown,
hence modeled according to π(θ) which is updated as new
observations become available.

The beta probability density function Beta (θ|α, β), where
0 ≤ θ ≤ 1 and the parameters α, β > 0, is used as the prior
since it represents probability distributions of binary events
(e.g., good or bad) and the conjugate is also a Beta distribution
[27]. The Beta density can be expressed as

f (θ|α, β) = Beta (θ|α, β) =
Γ (α+ β)

Γ (α) Γ (β)
θα−1(1− θ)β−1

(3)
where 0 ≤ θ ≤ 1 and α, β > 0, and Γ is the Euler gamma
function defined as Γ (z) =

∫∞
0
uz−1e−udu and is valid for

any complex number z. The expectation of the Beta density
is

E [Beta (θ|α, β)] =
α

α+ β
(4)

The Bayesian process works as follows. Initially, each ve-
hicle has the prior Beta(1, 1), that is, the uniform distribution
on [0, 1], for all its neighbors. The Beta(1, 1) prior represents
the absence of information as there are no observations. When
a newly observed data is available, if a correct behavior is
observed then x = 1; otherwise x = 0. The prior is updated
according to αnew = αold + x and βnew = βold + (1− x).

Due to the network dynamics, a vehicle may change its
behavior over time in contrast to the standard Bayesian
framework that gives the same weight regardless of time of
occurrence of the observed data. Therefore, old observations
may not always be relevant to the most recent ones. The fading
mechanism allows forgetting gradually old observations and
works as follows

yτη = yτ−1
η η + yτ (5)
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Fig. 2. The block diagram of ReFIoV.

where yτη is the accumulated value with fading of a given
vehicle at time-slot τ , yτ is the new value at time τ and η is
the fading factor and 0 < η < 1.

B. Information gathering

Each vehicle is equipped with a pseudo-watchdog compo-
nent that allows it to monitor the behavior of the other vehicles
with whom it interacts. Specifically, if vehicle vi forwards mo-
bile data (i.e., query or content) to vehicle vj , the behavior of
vj is evaluated in terms of two types of evidence, namely: (i) if
vj stores data1 (or caches contents) of vi and, (ii) if vj forwards
(or disseminates) vi’s data to another vehicle, say vk. The
former evidence is collected through direct communication
between two vehicles (i.e., through experience), meanwhile,
the latter is through Special Feedback Messages (SFMs).
Therefore, vi waits for an SFM. SFMs can be forwarded using
any routing protocol such as Epidemic routing protocol [28].
However, other dissemination approaches considering social
and/or mobility features or predictable trajectories of vehicles
could be applied. Two types of SFMs are proposed: (i) type-1
that is created by vk, which is 2 hops away from vi (which
can be a vehicle that stored (or cached) the data); and (ii)
type-2 that is created: (a) by the destination of the data or
(b) by vehicle that requested the data, for the routing and
caching problems, respectively. In addition, and uniquely for
the caching problem, a type-2 SFM is also created upon a
cache hit. Each SFM contains the mobile data identifier, the

1Please note that, the routing problem only considers one type of data, i.e.,
contents, meanwhile the caching problem considers both types of data, i.e.,
queries and contents.

list of vehicles that the mobile data traversed and the mobile
data digest.

The first-hand information represents the parameters of the
Beta distribution assumed by vi in its Bayesian opinion of vj’s
behavior in the system. Each vehicle keeps two data structures
(records): store first-hand information (Fsij) for stored (or
cached) data and forward first-hand information (Ffij) for
forwarded (or disseminated) data.

For each record, there are two counters: α and β. Store
and forward first-hand information is given by Fxij = (α, β)x,
where x ∈ {s, f}, and they are updated to identify attacks’
signature as follows:
• α is incremented if a good behavior is observed when:

– vj stores (or caches) data of other vehicles, e.g.,
vi. However, only storing (or caching) others’ data
may not be optimal for the system, besides being
an indicator of a misbehavior such as a black-hole
attack. Therefore, it is also necessary to ensure that
vj forwards (or disseminates) data that it stores (or
caches) if the data was not requested by it; or

– vi receives an SFM from vk because of the data vi
forwarded (or disseminated) to vj .

• β is incremented if a misbehavior is observed when:
– vehicle vj not being the destination or requester

of the data forwarded by vi, did not forward (or
disseminate) this data (no SFM was received neither
did the data Time-To-Live (TTL) expire); or

– vj did not store (or cache) data of other vehicles,
e.g., vi. vj can only refuse to store (or cache) data
forwarded (or disseminated) to it, if it already has
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the data in its local storage or by proving that the
data will be discarded to make space for other highly
requested data.

C. The reputation module

The reputation module is responsible for managing reputa-
tion ratings. A reputation rating Rij is updated (i) when first-
hand information is updated, and (ii) when received second-
hand information (or recommendation) is considered valid to
be incorporated.

If store and forward first-hand information that are kept by
each vehicle are available, they are combined to form a unique
first-hand information, hereafter called first-hand information
Fij = (α, β)F as follows:
• If (αs > αf and αf = 1 and αs > χ) then αF = αf

and βF = βF + 1. χ represents the number of evidence
of stored (or cached) data a node has while not having
any evidence of data that the node forwarded (or dissem-
inated) of another node.

• Otherwise, αF = αf and βF = βf .
The first-hand information rating corresponds to the expec-

tation of Beta(α, β)F and is computed using Eq. 4.
When first-hand information is updated, an exponential

weighted moving average (EWMA) is used to update the
reputation rating, therefore, allowing for reputation fading as
follows

Rtij = (1− φ)Rt−1
ij + φF tij (6)

where φ is the smoothing factor and 0 < φ < 1.
Since classical EWMA averages do not take into account

time, at the end of a given time window, first-hand information
is updated by means of the fading mechanism as explained in
Section IV-A.

D. The trust module

The goal of the trust module is to provide a dynamic
computation model for effectively evaluating the trust among
nodes in the presence of highly oscillating malicious behavior
such as gray-hole attacks. It is assumed that node vi (called
the evaluator node) needs to calculate the trustworthiness of
node vk (called the target node). This is performed when vi
receives first-hand information from some node vk about node
vj .

First, a similarity metric is computed aiming at determining
to what extent nodes vi and vk are alike. The similarity metric
consists in calculating the personalized difference in first-hand
information ratings over a common set of interacting nodes.
Let Hi represent the set of nodes with whom vi interacted.
Then, Hi∩k = Hi ∩Hk denotes the set of nodes with whom
both nodes vi and vk interacted. The personalized similarity
metric (ζik) is given by

ζik = 1−

√∑
a∈Hi∩k

(Fia −Fka)
2

|Hi∩k|
(7)

Any node k’s recommendations towards j are synthesized
at i as follows

Stij := F tij,k = (1− φ)St−1
ij + φF tkj (8)

In addition, the variance (σ) between received and stored
second-hand information and the personalized similarity met-
ric are also synthesized.

σt = (1− ψ) · σt−1 + ψ · Dt
D = Fkj − Sij

(9)

where 0 < ψ < 1. Let a similarity observation oi of node vi be
a tuple composed of node vk that sent the recommendation and
the personalized similarity metric ζik between nodes vi and
vk, i.e, oi =< vk, ζik >. Let Si, {i = 1, · · · ,K} denote a set
of K clusters. Let sk, {k = 1, · · · ,K} denote cluster centers.
Since binary classification problems will be considered (see
Section IV-E), K is set to 2. As more recommendations are
received, node vi applies the K-Means algorithm (Algorithm
1) to cluster the nodes that sent recommendations based on
their similarity. Let S+

i denote the cluster with the highest
value of cluster center. Recommendations are incorporated as
follows

Rtij =
Rt−1

ij +Ft
kj ·ζik·ε

1+ζik·ε

ε =

{
1, if node vk ∈ S+

i
Dt

Dmax
, otherwise

(10)

where ε is the discount factor and Dt is the current variance
and Dmax is the maximum variance ever obtained, and Dmax >
Dt.

Algorithm 1: K-Means Clustering
Data: Similarity observations: oi ∈ O
Result: Clusters: Si, i = 1, · · · ,K
Initialize sk, k = 1, · · · ,K cluster centers using the

Forgy method [29];
while sk does not converge do

foreach oi ∈ O do
S∗i = argmin

k
d(oi, sk)

end
for sk, k = 1, · · · ,K do

sk = 1
|Ok|

∑|Ok|
i oi

end
end

The synthesization of second-hand information and of the
variance between received and stored second-hand information
in conjunction with the personalized similarity metric make
the framework resilient against false praise and accusation
performed by colluding gray-hole misbehaving nodes.

E. The decision module

The decision module is responsible for classifying vehicles
in the system regardless of the problem at hand, e.g., routing,
caching or both. Classification aims to learn a mapping from
inputs x to outputs c(x), where c ∈ {1, ..., C}, with C being
the number of classes.
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1) Bayesian classification: In Bayesian classification prob-
lems, Θ is discrete and the goal is to estimate θ given an
observed data x. To address the routing and caching problems,
the vehicle’s behavior classification problem was considered.
Let
• θ ∈ Θ = {θ0 = NORMAL, θ1 = MISBEHAVING}

unknown state of nature.
• X ∈ X be a random variable with {f (x|θ) , x ∈ X}
• π (θ) > 0 and

∑
θ∈Θ π (θ) = 1 be the prior probability

mass function.
• a ∈ A = {a0 = CACHE_FORWARD, a1 =

DO_NOT_CACHE_FORWARD}2 be the allowed de-
cision or action.

• The “0/1” loss function be used for classification. It
assigns zero cost to any correct decision and unit cost
to any wrong decision.

• D be the set of allowed decision rules. A decision rule
(δ(x)) specifies how actions or decisions are chosen given
x.

• L (θ, a) be the loss function. It quantifies the conse-
quences of the decisions.

L (θ, a) =

1,

{
if θ = θ0 decide a = a1

if θ = θ1 decide a = a0

0, otherwise

(11)

The optimal Bayesian decision is given by

δBayes (x) = argmin
a∈A

ρ (π (θ) , a|x)

= argmin
a∈A

(L (θ0, a) f (x|θ0)π (θ0) + L (θ1, a) f (x|θ1)π (θ1))

(12)

δBayes (x) =

{
θ0, if l(x) ≥ t
θ1, otherwise

(13)

where l (x) = f(x|θ0)
f(x|θ1) is the likelihood ratio and t = π(θ1)

π(θ0) is
the decision threshold.

The likelihood function is given by the Bernoulli distri-
bution f (x|θ) = θr(1− θ)n−r, where r =

∑n
i=0 xi, and r

denotes the number of outcomes representing correct behavior.
In the beginning, if the only information available is the

conditional probability density function of the observed data
given the θ, the maximum likelihood decision criterion (δML)
[30] is used. δML is defined as

δML =

{
θ0, if l(x) ≥ 1

θ1, otherwise
(14)

In the vehicle’s behavior classification problem, after each
interaction between two nodes, the sender updates the rep-
utation rating of the other node based on the result of this
interaction. Each node clusters the other nodes to whom it

2Instead of representing distinct actions such as a0 = CACHE for the
caching problem and a0 = FORWARD for the routing problem, it is
represented only one action a0 = CACHE_FORWARD for simplicity.
The same applies to a1.

interacted in two groups: normal nodes, e.g., if Rij ≥ 1/2, and
misbehaving nodes, e.g., if Rij < 1/2. The prior probabilities
π (·) of these clusters, which allow determining the decision
threshold, are coefficients of the convex combination of the
number of nodes in these clusters. The optimal Bayesian
decision is computed using Eq. 13 given the prior probabilities.
However, if a correct behavior is observed and π (θ1) > π (θ0),
one may incur in false positives, i.e., a misclassification,
while using the optimal Bayesian decision criterion, because
of the higher weight of the decision threshold in comparison
to the likelihood ratio. The workaround consists in finding
attenuation parameters α̂ and β̂ of the posterior mean Bayesian
estimator

(
θ̂PM

)
[30] and computing an attenuated decision

threshold. θ̂PM is given by

θ̂PM =
α̂+ r

α̂+ β̂ + n
(15)

For the minimum possible case, i.e., one correct behavior
being observed and two clusters, one with 2 misbehaving
nodes and the other with 1 normal node, l (x) is 4/3. By
combining the latter with Eq. 13,

t = 1−θ̂PM

θ̂PM
≤ 4

3

θ̂PM ≥ 3/7
(16)

The Bayesian attenuation parameters α̂ and β̂, which result
from Eqs. 15 and 16, are given by

argmin
α̂,β̂>0

f(α̂, β̂) ≥ 0

f(α̂, β̂) = 7r + 4α̂− 3(β̂ + n)
(17)

If, for the case above, α̂ = β̂ = 2 than t = l(x). If instead
the maximum a posteriori Bayesian estimator [30] was used,
t > l(x) which would lead to misclassification.

2) Nearest neighbor classification: In a classification prob-
lem, each input x is a tuple composed of the node v and a
reputation rating R that was updated using the trust mod-
ule, i.e, x =< v,R >, That have a matching class label
c ∈ {NORMAL,MISBEHAVING}. Let D = {xn, cn}, n =
1, · · · , N be a training set. Given a new x, the goal is to find
the right class c(x). The training set can be obtained by means
of Bayesian classification (as explained in Section IV-E1). An
easy approach for this learning problem is defined as follows:
for a new x, find in the training set the nearest input and use
its class (Algorithm 2).

Algorithm 2: The nearest neighbor algorithm to clas-
sify x given train data D

Data: x,D
Result: c(x)
foreach x ∈ xn do

calculate dn = d(x, x);
end
find x∗ that is nearest to x: n∗ = argmin

n
dn;

Assign the class label c(x) = cn
∗
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F. The bio-inspired mechanism

Vehicles use V2X communications to learn about significant
events in the network. However, neighboring vehicles might
misbehave by reporting incorrect information in order to take
advantage of the system. In addition, misbehaving nodes may
also provide incorrect recommendations about other nodes
in order to influence the receiver’s decision. The existence
of incorrect information and misbehaving vehicles render the
system unreliable for safety and emergency applications. In
addition, one of the main challenges in network security
is determining the difference between normal and potentially
harmful activity. This problem is exacerbated by current and
future threats that require the development of automated and
adaptive mechanisms.

The mechanisms proposed in previous sections allow the
framework to identify correctly the events as well as misbe-
having nodes in most cases. However, content dissemination
applications are also characterized by fewer interactions be-
tween nodes because of cache hits conversely to routing. In
most cases, this increases misbehavior detection time.

The proposed biologically inspired (i.e., bio-inspired) mech-
anism is based on Danger Theory and works as follows: at the
end of each timeslot τk, node vi randomly selects a node vj in
its vicinity that it has evidence or suspects to be misbehaving.
For example, vj could be selected if it has αf = 1 and αs > χ
that is seen by the framework as a danger signal. In that case,
vi generates a decoy message using a backoff algorithm [31]
destined to vk that it considers having a good behavior, that
is, having a good reputation. The decoy message can only
be forwarded at most twice (i.e., the danger zone centered
at vi) and is intended to test if vj is, in fact, a misbehaving
node. If vj is de-facto misbehaving, it will not forward the
message to vk. Otherwise, it will forward and vk will generate
an SFM destined to vi. The following backoff algorithms
were considered for the generation of decoy messages: Binary
Exponential Backoff (BEB) and Multiplicative Increase Linear
Decrease (MILD). Backoff algorithms are employed by the
IEEE 802.11 Distributed Coordination Function [32] to share
the medium.

Our BEB algorithm works as follows: after a successful
decoy transmission attempt t at time t ∈ τk by vi to vk about
vj , vi selects a random slot r between 0 and 2t − 1. The next
decoy message about vj from vi would only be generated at
time t′ ∈ τk×r. On the other hand, in our MILD algorithm, the
next decoy message about vj from vi would only be generated
at time t′ ∈ τk ×m, where m ∈ N is a multiplicative factor.

V. PERFORMANCE EVALUATION

This section presents the simulation model and results
regarding the performance evaluation of ReFIoV.

A. The simulation model

ReFIoV was implemented on the Opportunistic Network
Environment (ONE) simulator [33]. The simulation model
consisted of synthetic mobility models (SMM) and a real
mobility trace (RMT). The simulation time was 14 and 7 days
with an update interval of 1.0 s for SMM and RMT scenarios,

respectively. The smoothing factor (φ) and ψ were set to 0.15
and 0.25. φ is close to the α value used in the estimation of
the Round Trip Time (RTT) on the Transport Control Protocol
(TCP) [32], and ψ is equal to the β value. The fading factor (η)
was set to 0.95 because VDTNs are normally sparse and this
value allows forgetting gradually old first-hand information. χ
was set to 3. The latter parameter represents the number of
evidence of store (or cached) data by a node meanwhile not
having any evidence of data forwarded (or disseminated) by
the same node to another one. Higher values of χ will slow
the convergence of ReFIoV.

The vehicles misbehavior considered for evaluation were
black- and gray-hole attacks. It was considered that nodes
implementing gray-hole attacks were also colluding. The ef-
fects of vehicles’ misbehavior were examined considering that
vehicles were using Epidemic to forward (or disseminate) data.
However, for the caching problem, it was also considered that
vehicles were using an on-path caching approach with a Least-
Frequently Used (LFU) policy. The percentage of misbehaving
vehicles varied from 20% to 80% with increments of 20%.

The size of vehicles’ local storage was 256 MB. The
mobile data contents’ size varied from 50 KB to 1.5 MB.
The following mobile data generation rates were considered:
randomly every 1.25 to 2.5 minutes – 1.25-2.5min (DG1),
2.5-5min (DG2) and 5-10min (DG3). They were used for
data content and query generation for the routing and caching
problems, respectively. In addition, for the caching problem,
the query generation followed the Zipf distribution [34]. The
latter distribution is commonly used for the characterization
of the popularity of objects. Queries were made to 5 and 10
content servers for SMM and RMT scenarios, respectively.
Each content server stored 50 contents.

1) Synthetic mobility models: The simulation time was 14
days with an update interval of 1.0 s. Map-based mobility
models of Helsinki city over an area of 4.5 × 3.4 Km and
Barcelona city over an area of 12 × 12 Km were used. It was
assumed that all nodes used Bluetooth and Wi-Fi interfaces.
Given that Helsinki and Barcelona cities are urban areas,
the communication range between nodes was 10 m and the
communication was bidirectional at a constant transmission
rate of 2 Mbit/s for the Bluetooth interface. Only two nodes
within range can communicate with each other at a time. The
TTL attribute of each data content was 5 h. The following
mobility models were considered:

a) Shortest-path Map-Based Movement (SPMBM):
SPMBM [22] consisted of a network with 144 vehicles and
6 trams in Helsinki city. Vehicles were moving at a speed
varying between 2.7 to 13.9 m/s. Each time a vehicle reaches
its destination, it paused for 60 to 300 s. Given that Helsinki
city is an urban area, the communication range between nodes
was set to 10 m and the communication is bidirectional at a
constant transmission rate of 10 Mbit/s for the 802.11a Wi-Fi
interface.

b) Map-Based Movement (MBM): MBM [35] consisted
of a network with 90 vehicles, 30 pedestrians and 6 RSUs
in Barcelona city. Vehicles and pedestrians were moving at
a speed varying between 2.7 to 13.9 m/s and 0.5 to 1.5
m/s, respectively. Each time a vehicle reaches its destination,
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it paused for 60 to 300 s. Given that Barcelona city is an
urban area, the communication range between nodes was set
to 30 m and the communication is bidirectional at a constant
transmission rate of 6 Mbit/s for the 802.11a Wi-Fi interface.
The size of the local storage of pedestrians and RSUs was 256
and 512 MB, respectively.

2) Real mobility trace: The taxicabs in Rome (TR) [36]
traces contains Global Positioning System (GPS) coordinates
of approximately 320 taxicabs collected over 30 days in Rome,
Italy. The simulation duration and number of vehicles were
reduced to 7 days and 304 vehicles, respectively. It was
assumed that all nodes used an 802.11p Wi-Fi interface with
a communication range of 100 m and a communication speed
of 10 Mbit/s. The TTL attribute of the mobile data was 24 h.

B. Simulation results

The evaluation of the performance of ReFIoV consisted in
appraising the reputation, trust and decision modules. For each
setting, i.e., protocol-percentage pair, up to five independent
simulations using different data generation seeds were con-
ducted, and the results averaged, for statistical confidence.

ReFIoV, which uses an Epidemic dissemination approach,
was compared to [22] (hereafter rREPSYS) and [1] (hereafter
cREPSYS), which are state-of-the-art reputation systems.

The following main metrics are considered for the evalua-
tion of ReFIoV:
• Detection time of misbehaving vehicles corresponds to

the simulation time that took all normal vehicles to
classify correctly all misbehaving vehicles they came in
contact with, starting at the detection instant of the first
misclassification.

• Robustness against false negatives and positives. The
following metrics were defined:

– Vehicle’s Behavior False Positives Ratio
(VBFPR) is the number of misbehaving vehicles
with a good classification, i.e., classified as
CACHE_FORWARD, overall vehicles classified.

– Vehicle’s Behavior False Negatives Ratio
(VBFNR) is the number of normal vehicles
with a bad classification, i.e., classified as
DO_NOT_CACHE_FORWARD, overall vehicles
classified.

• Control messages’ overhead ratio, which is the ratio
between the number of control data of the proposed
scheme (i.e., SFM and decoy messages disseminated)
overall data.

The influences of using different data generation rates and
the reputation decay mechanism, which allows redemption
of misbehaving nodes, both in the presence of black-hole
misbehaving nodes were analyzed. In addition, the influence
of using second-hand information to enhance detection time
of colluding gray-hole misbehaving nodes was also analyzed.

1) Detection time of misbehaving vehicles: First, the rout-
ing problem is analyzed. Figure 3 presents the time nec-
essary for each normal node with ReFIoV and rREPSYS
to classify correctly all misbehaving nodes they meet as
DO_NOT_CACHE_FORWARD in the SPMBM scenario

(a) rREPSYS (b) ReFIoV

Fig. 3. The time necessary for rREPSYS and ReFIoV to classify correctly
misbehaving vehicles as DO_NOT_CACHE_FORWARD for 20, 40, 60
and 80% of black-hole vehicles using DG3 in the SPMBM scenario.

(a) cREPSYS (b) ReFIoV

Fig. 4. The time necessary for cREPSYS and ReFIoV to correctly classify
misbehaving vehicles as DO_NOT_CACHE_FORWARD for 20, 40, 60
and 80% of black-hole vehicles using DG1 in the TR scenario.

for the black-hole attack. ReFIoV was only using the reputa-
tion and decision modules, i.e., Bayesian learning and classifi-
cation and the bio-inspired mechanism, meanwhile rREPSYS
was using all its modules. Each point on the graph corresponds
to the average of the percentage of misbehaving nodes that
were misclassified, i.e., classified as CACHE_FORWARD,
from the perspective of each normal node in the network at a
given time instant. The sampling was performed every 60 s.
rREPSYS takes more time to correctly classify misbehaving

nodes, which can be confirmed by the long tail in all its
curves (see Figure 3(a)). A long tail means that there is a
considerable number of normal nodes with a small percentage
of misclassified misbehaving nodes. Consider, for instance,
the tails of the curves representing 80% of misbehaving nodes
in Figure 3 for ReFIoV and rREPSYS. ReFIoV presented
the shortest tail, which shows that it was much faster to
correctly classifying misbehaving nodes. If the other curves
are compared, ReFIoV was also much faster if compared with
rREPSYS mostly because of the bio-inspired mechanism. The
decoy messages were essential in reducing detection time. In
short, ReFIoV is approximately 9.4, 7.8, 7.5 and 4.9 times
faster in comparison to rREPSYS to detect 20, 40, 60 and
80% of misbehaving nodes, respectively.

Lastly, the caching problem is analyzed. Figure 4 presents
the time necessary for each normal node using cREPSYS
and ReFIoV to classify correctly all misbehaving nodes they
meet as DO_NOT_CACHE_FORWARD in the TR scenario.
In the detection time of the routing problem (Figure 3(b)),
each node using ReFIoV analyze based on each data content
message that it forwards, the behavior of other nodes with



11

(a) rREPSYS (b) ReFIoV

Fig. 5. Vehicle’s behavior false positives and negatives ratios for 20, 40,
60 and 80% of black-hole vehicles using DG3 for the routing problem in
SPMBM.

(a) cREPSYS (b) ReFIoV

Fig. 6. Vehicle’s behavior false positives and negatives ratios for 20, 40, 60
and 80% of black-hole vehicles using DG1 for the caching problem in TR.

whom it interacts, that is, if they store and forward these
data content messages. Conversely, in the caching system,
the analysis made at each node is based on data query and
content messages, that is, if another node stores and forwards
data query messages, and/or if this other node cache and
disseminate data content messages. Besides the latter, only
a limited number of contents is considered in the caching
problem, and as time passed these contents get cached in inter-
mediate nodes reducing even further the interaction between
normal and misbehaving nodes. These are the sole reasons
for the behavior of the curves in Figure 4. However, if a
considerable higher number of different contents exist at each
content server, then the caching problem would become similar
to the routing problem, hence presenting also similar detection
times.

By analyzing Figure 4, one may conclude that ReFIoV
performed better than cREPSYS. This was due to the dis-
semination approach used that always attempted to replicate a
content to a recently encountered node.

2) Robustness: Similarly to the previous section, the rout-
ing problem is analyzed first. In Figure 5, two metrics,
namely VFPR and VFNR, are considered to measure the
robustness against black-hole attacks in the SPMBM sce-
nario. The main goal of any reputation system is to classify
nodes taking into account their behavior hence identifying
and isolating misbehaving nodes. ReFIoV achieved this goal
since it presents negligible (i.e., below 0.3%) VFPRs and
VFNRs. In fact, VFPR was below 0.02%, conversely to
rREPSYS whose VFPR increased with the increase in the
percentage of misbehaving nodes. However, this came at a

TABLE I
REFIOV WITH DG1 LOSSES (-) AND GAINS (+) IN COMPARISON TO

OTHER DATA GENERATION RATES FOR THE TR SCENARIO

% misbehaving nodes DG2 DG3
VFPR VFNR VFPR VFNR

20% -35.79 0.45 -72.11 0.72
40% -25.60 -0.10 -66.38 0.54
60% -23.82 -0.06 -56.79 0.66
80% -13.42 -14.62 -25.93 -26.89

cost as ReFIoV presents additional control overhead because
of the bio-inspired mechanism as explained in Section V-B5.
Nevertheless, in the eventuality of misclassified normal nodes
being temporarily isolated from the network, they will be able
to rejoin it due to the fading mechanism.

One may also conclude, based on Figure 5(b), that the
robustness of rREPSYS improves with the increase of the
number of misbehaving nodes. Please note that by varying
the number of misbehaving nodes, the total number of nodes
remains the same. Consequently, an inferior number of normal
nodes interacted more with an increasing number of misbehav-
ing nodes, which enabled a faster detection.

Figure 6 presents the robustness of cREPSYS and ReFIoV
for the caching problem in the TR scenario in the presence of
black-hole misbehaving nodes. Differently from routing where
a data message is forwarded between a source and a destina-
tion node using the delay-tolerant networking paradigm, in
the information-centric networking paradigm, requested data
contents can be returned by nodes having these contents in
their local storage. This reduced interactions among nodes
hence increasing detection time and VFNRs. The bio-inspired
mechanism enabled reducing even further ReFIoV’s false
positives by allowing each node to randomly test other nodes
with whom it interacted having αs values closer to χ. The
latter mechanism aimed at increasing the interaction among
nodes hence allowing to differentiate even better normal nodes
from misbehaving ones.

3) The influences of the data generation rate and the
reputation decay mechanism: The influence of the data gen-
eration rate on ReFIoV without the bio-inspired algorithm
is analyzed in the TR scenario. Table I presents robustness
gains (+) and losses (-) of ReFIoV with DG1 in comparison
to ReFIoV with DG2 and DG3. These results show that the
performance of ReFIoV was influenced by the data generation
rate. Ideally, only one evidence should be sufficient to identify
a misbehaving node. However, to avoid misclassifications,
more evidence is necessary even though it is assumed that
nodes’ behaviors do not change over time for the black-hole
attack.

Now, the influence of the reputation decay mechanism of
ReFIoV also without the bio-inspired algorithm is analyzed.
The goal of the decay mechanism, as explained in Section
IV-C, is to enable redemption, that is, to allow misclassified
normal nodes to rejoin the network as their reputation fades.
Overall, the performance of ReFIoV with the decay mech-
anism slightly degraded if compared to the unrealistic case
where the mechanism was not used. It was also noticed that
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(a) 20% (b) 40%

(c) 60% (d) 80%

Fig. 7. Comparison of detection times between ReFIoV with first-hand (FH)
and second-hand (SH) information for 20, 40, 60 and 80% of colluding
vehicles performing a gray-hole attack using DG3 in the SPMBM scenario.

the selection of the decay interval should take into account the
data generation rate, being directly proportional to this rate.
The selection of the decay time window should preferably be
addressed as an optimization problem aiming at improving the
overall performance of the system, thus not being the case of
one-solution-fits-all.

4) The influence of second-hand information: Up until now,
only the back-hole attack was considered. Figure 7 presents
a comparison of the detection times between ReFIoV with
first-hand (FH) and second-hand (SH) information for 20, 40,
60 and 80% of colluding vehicles performing a gray-hole
attack using DG3 in the SPMBM scenario. The goal now
is to appraise the trust module hence evaluating the influence
of integrating second-hand information. Please note that the
bio-inspired mechanism was not considered here.

One may conclude from Figure 7 that the use of second-
hand information reduces detection time. However, the gains
attained by using second-hand information reduce with the
increase in the percentage of misbehaving nodes. The main
reason behind this is that ReFIoV requires interactions among
nodes to classify them and these interactions increase as more
misbehaving nodes are added to the network. Recall that
second-hand information corresponds to first-hand information
sent by another node, i.e., a previous interaction between
two other nodes, and it is incorporated by considering how
similar the opinions of the sender and receiver of second-hand
information are in view of their common set of neighbors.
The use of the personalized similarity metric in conjunction
with the synthesization of information allowed ReFIoV to be
resilient against colluding gray-hole misbehaving nodes, that
is, misbehaving nodes that behave in an unpredictable manner
by oscillating their behavior to conceal their true nature.

5) Control messages’ overhead ratio:

(a) 20% (b) 40%

(c) 60% (d) 80%

Fig. 8. SFM messages overhead (oSFM) and VFNR losses for different
percentages of disseminated SFM messages and mobile data generation rates,
and for different percentages (20, 40, 60 and 80%) of vehicles performing a
black-hole attack in the MBM scenario.

a) The SFM’s overhead ratio: Figure 8 presents the con-
trol overhead caused by SFM messages overall disseminated
messages and the VFNR losses by considering a probabilistic
dissemination of SFM messages with probabilities varying
from 2.5% to 100% (in which, the latter value corresponds to
disseminating all SFM messages). The goal of probabilistically
disseminating SFM messages was to reduce the number of
such messages in the network. VFNR losses were obtained
by comparing VFNR values attained with SFM messages
disseminated with different probabilities.

The control overhead caused by SFM messages increased
(i) as more SFM messages were disseminated, and (ii) with
the reduction of the data generation rate. The former was due
to a higher number of SFM messages in the network that
also occupied more local storage space. In the latter, less data
replicas were created as a result of the reduction of the data
generation rate. However, the number of replicas of each data
content also increased.

In general, VFNR losses reduced considerably with the
increase in the number of SFM messages disseminated and
reduced slightly with the reduction of the data generation
rate. This shows that SFM messages are necessary but their
dissemination should be done with care thus avoiding to
saturate the network too many control messages.

Moreover, the average storage occupancy time (ASOT),
which measures the average amount of time each data content
stayed in the local storage, presented a similar behavior to the
control overhead. Specifically, ASOT (see Figure 9) increased
considerably with the reduction of the data generation rate,
and increased slightly with the increase of the probability of
the dissemination of SFM messages. Finally, yet importantly,
ASOT reduced with the increase of the percentage of mis-
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Fig. 9. The average storage occupancy time for different percentages of disseminated SFM messages and mobile data generation rates, and for different
percentages (20, 40, 60 and 80%) of vehicles performing a black-hole attack in the MBM scenario.

TABLE II
THE OVERHEAD RATIO CAUSED BY THE BIO-INSPIRED MECHANISM FOR

THE BACKOFF ALGORITHMS CONSIDERED ON SPMBM SCENARIO

% misbehaving nodes BEB MILD2 MILD3 MILD4
20% 1.61 1.85 2.11 1.71
40% 2.01 2.32 2.57 2.73
60% 3.00 3.00 3.13 3.01
80% 2.23 2.60 2.23 2.23

behaving nodes given that the fewer remaining good nodes
disseminated less SFM messages.

b) The bio-inspired mechanism’s overhead ratio: Despite
the advantages presented by the use of the bio-inspired mech-
anism, such as low detection times of misbehaving nodes, its
use also entails some disadvantages, such as additional control
overhead due to the use of decoy messages. Though, the use
of backoff algorithms to generate decoy messages enabled the
mechanism to present low control overhead if compared to the
algorithms used to forward (or disseminate) data. Table II and
III present the control overhead ratio caused by the mechanism
in both scenarios. The following backoff algorithms were
considered: BEB and MILD. Different multiplicative increase
factors were considered in MILD, namely 2 (MILD2), 3
(MILD3) and 4 (MILD4).

By analyzing both tables, one may conclude that BEB
presents the lowest overhead despite the gains in comparison
to other approaches, namely MILD2, MILD3, and MILD4,
not being very high. In addition, ReFIoV with BEB also
performed better than other backoff algorithms for the main
metrics considered in this Section.

VI. CONCLUSIONS AND FUTURE WORK

In this article, a novel reputation framework for information-
centric vehicular applications such as content dissemination,
which leverages ML and AIS was proposed.

TABLE III
THE OVERHEAD RATIO CAUSED BY THE BIO-INSPIRED MECHANISM FOR

THE BACKOFF ALGORITHM CONSIDERED ON TR SCENARIO

% misbehaving nodes BEB MILD2 MILD3 MILD4
20% 3.38 3.72 3.88 3.75
40% 4.33 4.88 4.77 4.88
60% 4.78 6.23 5.84 6.73
80% 5.03 7.22 6.55 6.23

The emerging latency requirement of 5G-based vehicular
networks relies on the cooperative behavior of vehicles. Re-
FIoV plays an important role by efficiently providing incen-
tives for vehicles to start sharing their resources by storing
(or caching) and forwarding (or disseminating) other vehicles’
data thus reducing latency to the users that requested the
data. The performance evaluation has shown that ReFIoV’s
detection time is at most 9 times faster, and it presents negli-
gible and very low false positives and negatives in comparison
with other reputation systems for both routing and caching
problems, respectively. Routing and caching are two distinct
problems even in I2oV since on the latter problem, data queries
do not always need to reach the content server. This implies
that fewer messages circulate in the network which increases
detection time of misbehaving nodes. The use of second-hand
information allowed ReFIoV to be resilient against colluding
misbehaving nodes behaving in an unpredictable manner by
changing their behavior to conceal their true nature.

As future work, the following research challenges have been
identified: (i) the evaluation of ReFIoV with other caching
policies and forwarding mechanisms, (ii) the use of more
elaborate attacker scenarios.
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