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Abstract—The significant evolution of the Internet of Things
(IoT) enabled the development of numerous devices able to
improve many aspects in various fields in the industry for smart
cities where machines have replaced humans. With the reduction
in manual work and the adoption of automation, cities are getting
more efficient and smarter. However, this evolution also made
data even more sensitive, especially in the industrial segment.
The latter has caught the attention of many hackers targeting
Industrial IoT (IIoT) devices or networks, hence the number of
malicious software, i.e., malware, has increased as well. In this
article, we present the IIoT concept and applications for smart
cities, besides also presenting the security challenges faced by
this emerging area. We survey currently available deep learning
techniques for IIoT in smart cities, mainly Deep Reinforcement
Learning, Recurrent Neural Networks, and Convolutional Neural
Networks, and highlight the advantages and disadvantages of
security-related methods. We also present insights, open issues,
and future trends applying deep learning techniques to enhance
IIoT security.

Index Terms—Deep Learning, IoT, Industrial IoT, Security,
Smart Cities.

I. INTRODUCTION

THE underlying concept underneath the Internet of Things
(IoT) paradigm is to enhance the modern quality of

life. IoT consists of interconnection, through the Internet,
of everyday objects equipped with numerous sensors with
computing and communication capabilities, which enable them
to send and receive information [1].

Temporal and spatial data are collected from IoT sensors
and devices, usually from specific events and circumstances
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tackling various challenges [2]. Nowadays, such devices are
evermore smarter, their communication is faster and they
are capable of executing more complex tasks [3]. Hence,
IoT is used in nearly every field, such as finances, tourism,
entertainment, industry, energy distribution, transportation,
healthcare, smart cities, education, and even in the domestic
environment [4], [5]. Consequently, there are more developers,
academia researchers, and individuals working on integrating
IoT technologies into commercial operations for smart cities,
paying less attention to safety and/or security measures for
such devices and networks. Such dereliction can compromise
IoT users and, in turn, disrupt an active ecosystem [6].

The undeniable advantages offered to the industrial sector
by the IoT paradigm, also known as the Industrial Internet of
Things (IIoT), are nonetheless associated with severe security
defects. The overlook of several security problems enables
the exploitation of sensitive data ranging from unprotected
cameras’ video streams to the access of confidential data in
IIoT devices [7]. Frequently, devices are effortlessly exploited
due to the neglect of security aspects and to the design of
potentially unprotected systems because of the lack of related
legislation along with profit-driven businesses [8].

Ensuring cybersecurity is one of the most significant chal-
lenges faced in an IIoT environment in smart cities. Specifi-
cally, blocking unauthorized access, enforcing privacy commu-
nication, and protecting edge devices from malware attacks are
some of the current challenges [9]. Many works in literature
propose automated methods based on machine learning (ML)
models, including deep neural networks, to guarantee IIoT
security regarding malware detection, fault diagnosis, and
anomaly detection [10], [11].

The sophistication and magnitude of cyberattacks, espe-
cially in the zero-day ones, has been raising and threatening
more IoT devices, as the application of such systems affects
peoples’ lives and becomes more critical as more sensitive
data are shared. Plentiful and significant targets including
industrial control, smart cities transportation, healthcare, smart
grid, and other wide-scale systems make very appealing for
bad-intended foes [12]. These attacks, born from the physical
connection of smart devices or inherited from the already
known digital environment, threaten the daily lives and the
proper function of the sort of device, including denial of
service attacks or bumping data to gaining access to the local
system [13].

The propagation of neural networks has called out for better
security solutions, making ML a promising technology to solve
the above issues. The neural networks’ proliferation posed
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the need for providing some intelligence to the machines to
gather information out of the data collected by sensors. The
purpose is to make the appropriate decision more intelligently
and autonomously [13], [14] and therefore forced by the
envisioned applications directing at achieving smart houses,
smart factories, smart hospitals, and smart grid, among others.
The response to such a demand is embodied by Deep Learning
(DL), which depicts an evolution of the conventional neural
network solutions [15].

DL is an emerging method applied in numerous IIoT ap-
plications. It offers smart decision-making and rationalization
and is based on Artificial Neural Networks (ANN) [16],
[17]. It is trained using large volumes of labeled data and
seamlessly updating related model parameters [7]. One of the
main techniques and often used is the Convolution Neural
Network (CNN), consisting of a series of fully connected
layers in which it applies a series of convolution layers with
filters (i.e., Kernals) with Pooling and Softmax function to
enhance the recognition and predictions [18].

The specific contributions of this article are summarized as
follows:

• We present the IIoT concept, its generic as well as
DL-enabled applications for Smart Cities, besides also
presenting the security challenges of this emerging area.

• We survey currently available DL methods for IIoT in
smart cities and highlight security-related methods as well
as describing their advantages and disadvantages.

• We also present insights, open issues, and challenges for
applying DL techniques to enhance IIoT security.

The remainder of this article is as follows. Section II
briefly introduces the concept of IIoT, its applications, and the
challenges of securing such a system. Section III describes and
comments on the various DL methods applied in the security
of IIoT. Section IV highlights what has been accomplished so
far, besides presenting challenges and open issues. Section V
presents concluding remarks and our vision of future research
directions.

II. IIOT CONCEPT, APPLICATIONS, AND SECURITY
CHALLENGES

A. The IIoT concept

IIoT relates to interconnected machines, networked devices,
and control sensors, commonly with applications of industrial
computers, including production and power management. This
interconnection between devices provides for improved analy-
sis, compilation, and exchange of data, conceivably facilitating
improvements in performance and productivity [7].

Consolidation in a conventional IIoT system with future-
oriented technologies includes fog computing, artificial intel-
ligence (IA), big data analytics, and more, aiming to improve
services, management, and governance in smart cities [19],
[20]. Utilizing embedded systems, wearables devices, and
wireless sensor interfaces allow IIoT to continuously and
ubiquitously acquire raw data.

Li et al. [21] proposed a general architecture for IoT com-
posed of five layers, namely: perception, network, middleware,
application, and business. IIoT devices are in the perception

layer and usually operate in exposed areas. The network
layer is the connection layer in the sense of transmission
of data and typically is composed of servers and access
points. The middleware is where the brain and fully-fledged
ML applications operate. The application and business layers
are the closest to the users and are generally composed of
software and general applications. Figure 1 shows a general
representation of a five-layer IIoT architecture.

In the smart city context, all types of sensor are used in the
Perception layer, from a simple smoke detector sensor [22]
to a complex multi-view camera setting [23], as well as any
device that can capture some form of data, such as wearables
with a cardiac sensor [24]. The main objective of this layer is
to capture data so the higher layers can use it. Technologies
such as smart streetlights and video monitoring and processing
are some examples that depend heavily on sensors of the
perception layer.

The Network layer focuses on data transfer and transporta-
tion and the devices to enable it. Access points communicating
through a wired and wireless connection or antennas, provid-
ing a mobile connection as 5G [25] and servers to collect and
process the information. Some technologies, such as Network
Function Virtualization and Virtual Network Functions, work
directly in this layer.

The Middleware layer is a concept of systems and software
that runs mostly in servers that provide some service to the
higher layers but also uses the data collected by the perception
layer. This software and services tend to be computationally
demanding, such as training a new ML model. Besides, most
of the security techniques are applied in this layer as it
provides the intersection between the software and the local
hardware [26].

The Application and the Business layers provide the soft-
ware and the clients for the end-user. The context of both
layers can be different, but the challenges faced are mostly
the same. Resource allocation, secure data transmission, and
mobility management are the primary concerns [27].

B. Applications

1) Generic applications for Smart Cities: One of many
applications that smart city aims, is the smart streetlight. A
system that can manage and control the streetlights is capable
of reducing the energy consumption by lighting the street
only when there is a traffic/pedestrian, or dimming the lights
depending on the time and weather. For the realization of
such a smart system, it is necessary to equip streetlights with
sensors and connectivity or processing power to collect and
treat data so that it functions effectively. The data can be
processed locally or transmitted to a control system through
the network, in which case, the system will determine the
best approach. This system is already in use in some cities
such as Amsterdam in the Netherlands and San Jose in the
United States [28]. Discussing in detail the Amsterdam case,
lamp posts were equipped with various sensors such as cam-
eras, WiFi connections, environmental sensors, among others.
Applications were then developed using DL and computer
vision (CV) techniques to be deployed, allowing to provide
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Fig. 1. General representation of a five-layer IIoT architecture.

information such as crowds, traffic, parking conditions, and air
quality, besides being able to adjust the brightness and color
of the lamp remotely and dynamically according to different
conditions.

A common problem in big urban areas is high vehicle
density. To provide an efficient and safer route is a constant
struggle in a smart city environment. Therefore, deploying
a Smart Traffic Management is one of the main goals as
it enables alleviating the issue mentioned above [29], [30].
Various technologies can be used to enhance such system,
extending from a simple and less complex one, e.g., car
navigation and signals traffic control, to a highly complex
one, e.g., multiple closed-circuit Television Camera (CCTV),
all integrated with live data, DL techniques and computer
vision (CV), to produce a real-time decision-making system
providing guidance and statistics for further analysis. A case
in Boston is a reference for smart traffic [25]. In this case,
the primary goals were to reduce carbon emissions, analyzing
and reducing vehicle distance travel, and make data accessible
to residents. It was divided into four categories, specifically:
unlocking data, sharing data, analyzing data, future vision. The
first category, Unlocking data, is to install cameras and sensors
in the street that are capable of capturing information and
transfer it to a Control and Management Center. The second
is responsible for transmitting the data collected in the center
to a department so it can be analyzed, leading to the third
category, analyzing data, in which, applying DL techniques,
provides consolidated information. The last category, future

vision, is a roadmap to develop and deploy new technologies
to improve the overall system.

Smart grids, in particular smart meters, is an area that drives
much attention for its enormous potential and benefits [31].
Providing a reliable service while having to continually adjust
to new regulations, for instance, reducing carbon emissions
and still be flexible to customer demands, is a challenge
that many companies seek to implement. Novel concepts
like Virtual Power Plants (VPPs) have been developed to
address pricing, load reduction, and demand response issues.
The latter concept consists of using a group of customers
and putting them under a cooperative program in order to
predict better, analyze the demands, and use the collected
data to further enhance the system [32]. The key is in the
management system, which centralizes all the information,
collecting the data from sensors installed in some transmission
lines. The data then can be analyzed and both DL and business
intelligence can be applied to provide a better understanding
and control of storage and generation as well as the distribution
and predictions.

The current healthcare system faces substantial challenges,
and it struggles to provide a good quality service at a low cost
for the increasing demand and the high cost of keeping such an
environment [28]. Besides, the IoT paradigm offers solutions
to these challenges through devices capable of monitoring
the patient’s activities and signals. These devices can be
sensors attached to the patient’s body or in the surrounding
environment, measuring signals such as blood pressure and
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heart rate to the vigilance of activities and predicting behaviors
with DL [33]. An example is online cardiac monitoring [4]
that collects and analyzes heart signals and can predict future
problems. When integrated with a smart healthcare system,
they can fire a signal alert to an ambulance and can inform
the hospital of a possible emergency.

2) DL-enabled applications: Numerous IoT and IIoT ap-
plications are employing the DL concept ranging from data
mining of surveillance videos [34] to user authentication in
the physical network layer [35], [36]. The excellent features of
DL are the enormous capacity of recognizing patterns, which
leads to many applications in smart cities. One of the problems
that DL and other types of Artificial Intelligence (AI) have is
that they need to have a vast amount of labeled data before
they start to learn. Besides, depending on the type of data,
they can also require a vast amount of computing power to
process it.

With this in mind, Gao et al. [37] have developed a method
to detect the saliency map, which is an image that shows each
pixel’s unique quality, of collaborative cameras (also called
co-saliency) to increase the trust of each sample frame of the
stream video, making the data secure and resumed for another
AI technique to learn from it. This application can go to all
areas of IoT, from smart-homes that use surveillance cameras
to smart cities in detecting traffic and industrial surveillance of
employees. Although the method mentioned above has been
used for surveillance, there are numerous applications where
it can be applied in IoT and IIoT [38].

If we consider the variety of applications making use of DL
and IoT concepts, it is essential to notice the security flaws
and breaches of an application to handover some confidential
information or cause material damage, or even endangering
lives, especially in industrial smart city applications [39],
[40]. For example, invading some security cameras can cause
sensitive data leakage. Moreover, deployed IoT sensors at
factories control environmental contamination and substance
exposures in water supply, while sensors of noxious gases,
smoke, and temperature, in addition to alarm systems, prevent
environmental disasters [41]. Some case studies have described
the notable influence of IoT on natural resources’ integrity and
consumption.

There are numerous security implications in this context
since IIoT is widely heterogeneous by nature. While the
research contributions of [29], [42] mainly discuss the topics
of IoT structures and similar technologies, several other studies
delved deep into its security features.

C. Security Challenges

Several technological challenges, including restricted stor-
age, power, and computational capabilities, pose many IoT
security conditions. For instance, the simple effect of unautho-
rized access to IIoT devices by using default user credentials
remains unsolved [43]. Although the manufacturers are aware
of this flaw, little is being done to mitigate it, thus burdening
the user with a technically challenging problem. Ironically, in
IoT devices, and as shown by Li et al. [32], about 48% of
users are unaware that their devices could be used somehow

to conduct cyber-attacks, and firmware updates are never
performed in 40% of them. Many have argued that the updates
should be the responsibility of the manufacturers and software
developers in order to remediate security risks.

As previously mentioned, the IIoT architecture can be
divided into five layers, each layer having its own vulnera-
bilities. In the perception layer, IIoT devices are vulnerable
to various physical attacks since they operate in the exterior
environment, and the primary goal of an attacker usually is
to steal or tamper sensors’ data. Attacks such as man-in-
the-middle attacks and denial of service (DoS) happens in
the middleware and network layers. Business and application
suffer the same types of attacks of a traditional computer,
and some examples include privilege escalation and structured
query language (SQL) injections. Figure 2 shows possible
attacks at each layer.

The main issue in IoT is the lack of communication stan-
dards [44], which complicates the task of ensuring security
given the inexistence of guidelines. Consequently, the devel-
opment of general solutions can be troublesome regarding
security features. As shown by S. Garg et al. [45], the focus
of hackers is to attack the application layer (i.e., software) and
web servers. The reasons behind it are that servers accumulate
a significant amount of private information, besides being the
gateway to other devices. Therefore, injecting malicious code
that is able to infect the connected equipment is potentially
valuable to hackers.

In terms of hardware, two features directly involve hardware
security techniques: a hardware root of trust and hardware-
supported software isolation [46]. The idea of using the
hardware as a mechanism to generate units isolated from
one another and to save cryptographic keys securely are not
new and are comparable to those in classical IT studies.
Many challenges emerge in hardware security in smart cities’
IIoT systems, mainly because of their computational and
energy restrictions. Moreover, by nature, some IIoT devices
might not possess accurate real-time clocks, making some
networks fundamentally impossible. These factors can cause
even higher-layer security to be compromised [47].

On the other hand, and regarding software, there are other
challenges. For instance, current operating systems (OS) sup-
port process isolation, that is, one process cannot interfere
with another one on the system. The memory management
unit (MMU) can guarantee such isolation. The issue here is to
maintain the classic process isolation idea without an MMU
since there is no centralized OS managing all processes in
an IIoT environment [48]. To allow IIoT devices with more
resources, there are necessary new methods to enable the OS of
resource-constrained to be able of such isolation, even though
the notion of process isolation is well-known.

Another typical challenge is access control. The OS from
untrusted code through access control protects system re-
sources. There are generally two concepts to secure the access.
The first is to designate part of the code a unique identifier
that only the OS knows. The second is to give a token where
only the process with it can run. Access control systems
are particularly challenging to make [43]. The access control
concept, although still pertaining to IoT platforms, poses new
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Fig. 2. Representation of the possible attacks per layer in an IIoT architecture

challenges from a usability perspective in the design of these
systems. An intriguing challenge is to produce an access
control system for IoT while utilizing our natural intuition
about physical objects as most of the previous access control
systems still utilize files and processes, and virtual objects
[49].

Authentication also plays a critical role in IoT security.
Passwords are currently the most popularly used forms to
authenticate users to their IoT devices, services, and platforms.
However, weak passwords cause a lot of concerns as they
recently enabled massive botnets DoS attacks [50], [51].

Multiple computing areas use techniques for detecting mis-
behaving devices on the network as a comprehensive and
well-deployed security manner. Obtaining useful information
from anomaly detectors is the core challenge for tuning them
to generate a low amount of errors, which means to reduce
how frequently the algorithm returns a false-positive or false-
negative [52]. The heterogeneity of the devices that typically

connect to a network makes this particular case a challenging
problem. Since most of them perform different functions,
which leads to complex network traces, making it hard to
characterize “bad” behaviors. On the contrary, IIoT devices
have simple goals, aiming to a more straightforward network
dynamics, therefore, leading to easy to predict behavior mod-
els and eventually leading to fewer errors in anomaly detectors
[53].

III. DEEP LEARNING FOR IIOT

Deep Machine Learning (DML), or just DL, plays an
essential role in IIoT, as the characteristic versatility of the
technology allows the deployment in almost all fields, of which
we will describe some of the key topics here. Figure 3 shows
the working principle of DL applied to IIoT security.



6

Fig. 3. An illustration of DL working principle for IIoT Security

A. Resource Management

Network Function Virtualization (NFV) [54] has been
mostly employed by network service providers to separate ded-
icated hardware from network functions by running on general
hardware functions inflexible software applications as Virtual
Network Functions (VNFs). However, such technology has
some limitations. The orchestration of Service Function Chain
(SFC) [54] is the major challenge in NFV as it is the pipeline
operation of VNFs. The efficiency of physical resource usage
and service provision is critically affected by the placement
and organization of SFC. SFC faces challenges in dynamic
service mapping and service reliability and dynamic traffic
regulation [55].

SFC orchestration optimization is supported by techniques
such as heuristic algorithm, integer linear programming (ILP),
and game theory. However, the orchestration problem is that it
grows exponentially and is even more noticeable in complex
networks. The latter is also resource-demanding as the network
increase, leaving the previous methods to be lacking in the
necessary scalability. In order to reduce the load in the
servers, a common and prominent technique is the Mobile
Edge Computing (MEC). However, the end-to-end connection
latency caused by the physical distance between terminal
devices and cloud service providers is known to be intolerable
or impractical in sensitive applications of latency [54].

To address the SFC orchestration problem, Shaoyong et al.
[54] used Deep Reinforcement Learning (DRL) as a solution,
besides also implementing the Asynchronous Advantage Actor
Critic (A3C) algorithm in the hybrid cloud-edge scenario to
optimize SFC orchestration. They also combined SFC alloca-
tion, after obtaining the optimal orchestration, with Blockchain
to ensure reliability on the process of SFC allocation. This
allowed for a very efficient, scalable, and secure resource
management. Nonetheless, any heterogeneity and delay of
response are omitted.

On the other hand, Fatima et al. [56] proposed an approach
in the IIoT network, where the devices’ session setup and
management, channel allocation, and interference management
are in the underlay networks. The survey shows great potential
using DRL to solve the resource management issue, detailing
the challenges and possible solutions, although it lacked ap-
plications.

Lu et al. [57] described a series of system designs for

improving communication and resources management consid-
ering a 5G network architecture. The limitation that usually
undergoes in edge and mobile devices, such as limited storage
space or insufficient power supply, is a decisive factor to not
accommodate network equipment growth. The use of expen-
sive and inflexible equipment by network operators, besides a
series of complex control plane protocols, are the main factors
influencing the slow upgrade of network equipment.

To effectively reduce latency, network overhead, and packet
size, Lu et al. [57] proposed an ML-based recommender
system to predict the most suitable packet, meeting the user’s
demand based on the historical consumption record. According
to their testbed’s results, the algorithm improved the mobile
data usage in reducing the data transferred, latency, and
overhead in certain regions. However, incomplete data and
irregular user behavior directly impact the algorithm, making
it, in some cases, not only fail to predict packets but also to
increase the resources needed for routing since it needs to
send more metadata to the recommender’s prediction, hence
demanding improvement in efficiency and availability.

Although the previous algorithm targets generic 5G-enabled
applications, it is not well suited for some specific ones, such
as vehicular communication. With this issue in mind, Khan
et al. [58] developed an ML-enabled architecture for secure
and robust communication between autonomous vehicles. The
need to collect real-time information about speed, direction,
and location, with the increasing demand for data services
and high bandwidth because of frequent updates, are the main
requirements for vehicular communication creating several
challenges to overcome. The proposed policy framework ar-
chitecture for resource allocation in SDN-based 5G cellular
networks uses three approaches: CNN, LSTM, and DNN. The
experimental results show that it was possible to improve
resource allocation time and accuracy. Specifically, LSTM and
CNN approaches were better in resource allocation time and
accuracy, respectively.

B. Authentication Systems
A significant number of IoT devices operate under untrusted

environmental conditions, therefore, exposed to several po-
tentially malicious attacks [8]. Traditional methods have high
computational cost and lack protection from dynamic injection
attacks in which the intruder can collect data in both, long time
duration and stealthy to the system.
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B. Chatterjee et al. [8] proposed a watermarking framework
that enables the IoT gateway to authenticate IoT devices
signals and detects the existence of a cyber-attack using aug-
mentation. It exploits variations on the manufacturing process
in order to create a unique and device-specific identifier for a
physical system, called Physical Unclonable Functions (PUF).
This work’s results are robust and reliable, although there is
no comparison to other methods and heterogeneity.

Another example demonstrated in [36] uses authentication
in the physical layer by comparing channel impulse response,
such as channel state information, channel phase response,
and received signal strength as the comparison is performed
using a threshold, hence making it harder to authenticate where
there are multiple nodes at the same time. The solution is
to use Deep Neural Network (DNN) for faster and scalable
authentication, which allowed for impressive results. However,
it lacks proper studies in using the method in more secure
environments.

Other studies such as [59] and [11] also show impressive
results in the field of authentication, as both use DL to improve
the classification and identification in an ample amount of
simultaneous or complex data. However, some improvements
in dealing with static devices and finding a good tradeoff
between resource constraints, delay, and robustness are still
necessary.

C. Surveillance

Vision sensors installed in a smart city network can gen-
erate enough video data to meet Big Data requirements,
being also critical devices for various IIoT applications. This
data requires high processing power for tasks such as street
monitoring and salient events detection in the public areas.
Redundancy removal, along with presentation and preservation
of only salient data in compact form, is the essential require-
ment of such applications. Otherwise, it would be impractical
to perform such tasks in smart cities for future use and
analysis. Santana et al. [60] proposed CNN approaches based
on the UNet architecture and Siamese ANN for scene change
detection and obstructed routes applications. These approaches
consist of an encoder and decoder, where the former is respon-
sible for finding the difference between images while the latter
interprets them to generate a binary mask. The experiments
show robust and promising results, even considering complex
scenarios, such as bad weather conditions. The downside is
that the network requires a clear and distinct difference in the
images for detection. If the changes are too subtle or minimal,
the accuracy might be unacceptable.

In this same context, Gao et al. [61] proposed a salient
object detection CNN in the cloud-edge environment. The key
is to maintain the detailed local information on the edge but
extracting the global contextual information on the cloud. To
this aim, the training stage was structured in hierarchical allo-
cation, so it would be possible to extract the within-semantic
and cross-semantic knowledge. The proposed algorithm was
divided into two pyramidal structures, i.e., the forward and
backward pyramids, to detect the saliency. The former pyramid
aims to extract the global contextual information and preserve

the detailed local information in the raw image. The latter
one aims to fuse the different-level features from the forward
pyramid to predict the saliency map of the raw image. This
approach was compared to eleven other state-of-the-art meth-
ods, showing the performance and accuracy of the algorithm,
although it is not suitable for resource-constrained devices.

Another algorithm was proposed by Santana et al. [38] for
saliency detection, which consists of two mechanisms. One
is the region-proposal-based optical flow in order to address
the blurriness of moving background disturbance. The other
mechanism is the bidirectional Bayesian state transition for
overcoming the difficulty of modeling the saliency uncertainty
in the spatio-temporal domain. The experiments were per-
formed with two public datasets, and the results performed
slightly better than other state-of-the-art algorithms.

Studies on summarization, such as in [62], which uses a DL-
based method to achieve Multi-View Summarization (MVS)
by means of a target-appearance-based shots segmentation and
extraction of deep features from each frame of a sequence,
eliminate major data storage overload and cutting the essential
parts of a video. For an online MVS to work correctly, it is
required to have a large network bandwidth and a considerable
computational power for an IIoT device. Although the onerous
requirements for the method, the results show that it has been
able to cut an enormous amount of useless data. Hussain et
al. [3] use a similar MVS approach but applied to embedded
devices.

Muhammad et al. [63] tried to solve costs in power and
energy by applying Hierarchical Weighted Fusion, which is
a mechanism designed to produce an effective extraction of
representative keyframes by aggregating scores for each frame
of the segmented shot and smartly combining the extracted
features. Moreover, in [64], they tried to solve the cost in
scenarios of resource-constrained devices. Gao et al. [37]
presented a method to detect and extract the co-saliency of
video streams in IIoT.

Events such as fire disasters are also important to monitor
in a surveillance environment, as, for instance, they can
lead to social and economic loss. Due to this reason, fire
detection systems are essential to develop, and significant
research efforts have been made to prevent, detect, monitor,
and generate necessary alarms about the existence of smoke
and fire. However, this detection has numerous challenges that
restrain the performance of AI-assisted applications.

Most smoke detection methods can be classified into three
categories, namely color-based, motion-based, and a hybrid
approach [65]. The color-based methods use the color model,
a mathematical expression to describe the color separating into
three or four different values, to detect specific patterns to
identify fire or smoke such as a specific black cloud or a bright
spot. The motion-based methods use the smoke locomotion to
predict fire and differentiates from the fog and other natural
events. The hybrid methods combine both to increase the
probability of detection.

As an example, Muhammad et al. [65] proposed an energy-
friendly MEC-assisted smoke detection based on a deep CNN.
The method consisted of a light-weighted architecture, and one
of the main features is to be deployable in foggy surveillance
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environments. This method presents acceptable accuracy and
execution time. However, this approach only detects smoke,
but not its location. Similarly, Khan et al. [66] developed a
smoke detection method with local processing for assistance
and real-time detection in a foggy environment. Even though
suffering the same restrictions as other approaches, their
results were better in terms of false alarms, besides being able
to detect even in the early stages of fire.

D. Privacy Awareness

Data privacy plays a critical role in smart cities, and the
following two main security concerns must be taken into
account when talking about privacy [67]. The first one is data
privacy leakage, which can prevent participants from sharing
their data since it can be disclosed. The second is the model
parameters’ privacy leakage. This case will compromise the
training model, which can cause harm in the interests of the
collective participants since the training model is considered
the intellectual property of the participants and should not be
revealed to others, making it untrustful [68].

Ensuring privacy comes at the cost of performance since
the system must check for all possible leakages, making data
transition slower. To prevent this, He et al. [69] developed a
new method that was called Deep post-decision state (PDS)
learning capable of exploiting the extra information about the
energy harvesting process that outperforms most conventional
methods with few downsides, such as the slower speed learn-
ing.

Zhang et al. [7] described the problem when facing a lack of
a massive public dataset in a learning group to share this data
in an asynchronous environment, which can cause the private
information to be exposed. Thinking about this problem, the
authors presented two approaches to address this issue, one for
continuous and another for dynamic systems. Both methods
are based on five main components, which are ”KeyGen”
(to produce the private/public key pair), ”Decryption”, ”Com-
pute”, ”Encryption”, and ”Aggregate” (the learned data to
the model). Both approaches presented good results, however,
coming with some computational cost. Liu et al. [70] arrived at
similar results. Privacy-preserving mechanisms were proposed
in [71], [72] to enable mobile IoT devices (e.g., vehicles)
to make routing decisions while keeping their sensitive data
private.

Another critical factor is Blockchain, with the capability
of offering unique properties such as transparency and data
integrity [73]. In smart cities, vehicular networks and intel-
ligent transportation systems’ applications have critical data
and thus need to preserve privacy. A federated learning (FL)
technique integrated with Blockchain was presented by Lu et
al. [74] endeavoring for privacy-preserved data sharing in IIoT.
The authors implemented ML into the consensus process of
the Blockchain, where, by removing the centralized trust, it
was capable of improving the resources management of the
device as well as the efficiency of the transaction. Despite
the promising results, data privacy could not be guaranteed.
Besides, Blockchain’s computational requirements is still a
demanding challenge and a limiting factor.

Similarly, Zhao et al. [75] also used FL but aiming to enable
MEC’s server and mobile phones to use privacy-preserving
communication. To reduce the substantial computational re-
source demanded by both ML and Blockchain, the authors
proposed a new normalization technique.

E. Attacks and Threads Detection
Considering the five-layers’ architecture proposed by Li et

al. [21], IIoT devices in the perception layer are vulnerable to
several physical attacks, mostly aiming to steal or tamper the
data that these sensors collect [28]. However, it is mostly used
with another device in the local area. The vulnerabilities in the
network layer often result in attacks such as man-in-the-middle
and DoS [26]. Such attacks mostly result in exploiting security
vulnerabilities of protocols such as TCP/UDP and Domain
Name System (DNS) [76]. Traditional computer systems and
the application layer share much in common; therefore, they
both are plagued by the same types of attacks and vulnerabili-
ties, for instance, SQL injections, depending on the application
[77].

1) Malware Detection: In short, malware is a malicious
software or a code that is injected in a device to various
ends, such as sending data to others or facilitating the access
of more harmful threads (the famous Trojan). To prevent
this, Ullah et al. [78] described a DL method capable of
preserving privacy awareness and detecting malware threats.
This method was compared to four other methods, namely
the k-nearest neighbors’ algorithm (KNN), Latent Semantic
Analysis (LSA), Parse Tree, and Multiple Linear Regression
(MLR). Although LSA performed better, it was not able to
scale when compared to the presented DL based method.

Azmoodeh et al. [79] used Deep Eigenspace Learning
(DEL) to detect malware on devices by analyzing the op-
erational code sequence. This method outperformed other
ones presented in the paper in both precision and accuracy.
However, the method came to a higher computational cost
and a shortcoming in terms of distributed computing. On the
other hand, Alasmary et al. [52] proposed a method using
Control Flow Graphs (CFG) to detect malware. However,
although being lighter, its performance was surpassed by
another method that used DL by 96% to 99% accuracy,
respectively, and it was tied to a specific OS (i.e., Android).

2) Attack and Intrusion Detection: An attack and intrusion
have a similar goal, which is to enter the system of the
device and steal or write data onto it in order to gain or
destroy the information or the system [80]. A. Diro et al.
[41] applied a DL technique in a fog computing environment,
distributing the detection on fog nodes, getting better physical
resource management and scalability. Although promising
with results around 99% of accuracy and precision, it requires
a large amount of network bandwidth. M. Aminanto et al.
[81] proposed a deep-feature extraction and selection approach
that combines stacked feature extraction and weighted feature
selection. The proposed approach achieved a very high detec-
tion accuracy and a very low false alarm rate in comparison
to other feature selection methods such as Completely Fair
Scheduler (CFS), ANN, Support Vector Machine (SVM), and
C4.5 algorithm in Wi-Fi networks.
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Li et al. [32] described two DL methods that work together
to extract energy auditing data effectively, enabling for a
physical and cyber detection of attacks. The paper does not
mention any test, only proves the concept using predefined
cases.

3) Anomaly Detection: Anomaly Detection is a broader
spectrum since it can take many forms, although with a similar
symptom. That is, in the network traffic data, it is possible to
identify suspicious activity such as malicious queries or a DoS
attack through pattern recognition. In many studies such as
[13], [45], although having different goals, they used network
traffic data or energy oscillation and came to similar results.
All the proposed methods had accuracy ranging from 96% to
99.9% in determining a system anomaly, nonetheless omitting
key factors such as the system response time and bandwidth
usage, leaving these factors as an open issue.

N. Magaia et al. [82], [83] proposed an AI-based reputation
framework, which used ML and the artificial immune system,
for misbehavior detection in vehicular environments. Besides
outperforming state-of-the-art reputation systems in the exper-
imental setup considered, the proposed framework presented
very low false positives and negatives’ ratios.

Table I summarizes DL techniques for IIoT. The contribu-
tion made by the research community in enhancing the security
have taken good steps in order to preserve the integrity of a
smart city ecosystem. In addition, the main algorithms are
highlighted, and the advantages/disadvantages are discussed.
Most approaches solved two main challenges, which is the
scalability and data heterogeneity, offering satisfactory results
in comparison to the conventional methods. Other researchers
focused on addressing the performance issue, but the tradeoff
between aspects such as resources and robustness has com-
promised some methods.

IV. DISCUSSION, OPPORTUNITIES AND OPEN ISSUES

IIoT security concerns have increased exponentially as the
risks and sensitivity of data have grown lately. The vulnera-
bilities in IIoT devices may cause undesirable effects as they
are prone to viruses, denial of service attacks, and intrusion
attempts. More effective measures should be taken to avoid
such situations, hence allowing system developers and IoT
device manufacturers to improve their methods for better
security [80].

The solutions mentioned above try to solve such issues, but
they suffer from some serious security flaws or have many
requirements, such as high computation cost or bandwidth. In
contrast, others are robust but do not take into account the
different characteristics of IIoT devices, such as their limited
computational power. Many challenges come from the fact that
IIoT systems are complex and can differ significantly from
each other, which compromises some security aspects [68].

In a glance, these proposals might be robust and can be
applied to various scenarios, including resource-constrained
devices. However, they all have their advantages and draw-
backs, none of which satisfies all the features. The most no-
table characteristic that most applications try to achieve is het-
erogeneity, usually coming at the cost of more computational

power [9]. Another strong characteristic is scalability using
new technologies such as Blockchain, but most proposals show
a tradeoff between communication latency and response delay
[84].

In networking and communication, to deal with the gran-
ularity (i.e., level of detail in a dataset) of Software De-
fined Networking (SDN) and NFV-based protection is still an
open challenge by considering the inherent tradeoff among
performance, flexibility, and cost. The trend nowadays is for
interaction among all network architectures layers supporting
intrusion detection systems, conversely to the previous focus
on the lowest layer level [80]. Many applications also use DL
in a centralized and cloud-based server to process all data,
hence transferring heavy payloads. However, data processing
on edge devices is still an issue in most cases.

The complex environment of IIoT also presents a significant
security challenge, yet few methods are capable of satisfy-
ing all characteristics ranging from scalability to reliability.
Blockchain has enormous potential, and Choo et al. [73]
described areas of its use with IIoT, 5G, edge and cloud
computing, and trust management. Besides, vulnerability iden-
tification and exploitation of Blockchain and IIoT are some
key points to promote a secure environment. 5G is becoming a
standard as new devices and chips are coming to be compatible
with it. Thus, a focus on such technology can improve and
solve many issues such as delay and response times, as
Luong et al. [55] showed their comparisons of communications
between devices.

Muhammad et al. [63] provided a reference model in
DL techniques, security, and the smart city paradigm. The
combination of its aggregation and the summarizing capabil-
ities of its deep CNN shows promising mechanics for future
implementations. The tradeoff between the quality and the
processing time should be analyzed together with technologies
such as Blockchain to enable a more scalable application.

Table II summarizes contributions as well as the overall
advantages and disadvantages.

V. CONCLUSIONS AND FUTURE TRENDS

Applications will tend to use more sensitive data as the
interest in IIoT grows. As such, to ensure their security is a
priority. As an emerging technology, DL is one of the many
tools available that enable great results to problems faced in the
smart city environment. To this end, we review various studies
and deployments of DL in IIoT infrastructure, application, and
services and highlight lessons learned.

It is shown that DL is a powerful tool to develop and enable
more privacy, security, and efficiency in all fields of smart
cities, hence enabling great feats that, otherwise, would be
impractical or impossible. Nevertheless, there are more chal-
lenges to be faced. Since, by nature, IIoT is a heterogeneous
environment, there are still many challenges in defining new
protocols, authentication methods as well as to keep privacy
awareness at the same time. Resource-constrained devices
still have trouble performing more complex tasks as malware
detection. Blockchain is another big promising technology
that has solved some critical problems regarding scalability
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TABLE I
DEEP LEARNING TECHNIQUES FOR INDUSTRIAL IOT

Topic Publication Applications Model Technique Function
Approxima-
tion

Scalability Reliability Resource
Con-
strained
Devices

Resource
Management

[54] Network DRL Service Function Chain (SFC) Regression 3 7 3
[55] Network DRL SFC Regression 3 7 3
[43] Device ANN Forward Central Dynamic and

Available
Regression 7 3 7

Authentication
Systems

[8] Device DNN Radio Frequency Physical unclon-
able functions (RF-PUF)

Classification 7 3 7

[11] Device DRL Game Theory, Nash Equilibrium,
LSTM

Classification 3 3 3

[59] Device RNN SVM, LSTM Classification 3 7 3
[36] Device DNN SVM, LSTM Regression 3 3 7

Surveillance

[62] Software DNN Bi-directional Long Short-term
Memory

Classification 3 7 7

[3] Software CNN LSTM Classification 7 3 3
[63] Software CNN Hierarchal Weighted Fusion Classification 7 3 3
[64] Software DNN Hierarchal Weighted Fusion Classification 7 3 3
[38] Network CNN Siamese U-Nets and Semantic Seg-

mentation
Regression 7 3 7

[37] Software DNN Two-path information propagation
and stage-wise network refinement

Classification 7 3 7

Privacy
Awareness

[70] Software CNN &
DRL

Markov Decision Process Classification 3 3 7

[69] Network DNN Post-Decision State Algorithm Regression 7 3 7
[7] Network DNN Proxy Re-Encryption Regression 3 7 7

Attacks and
Threads
Detection

[78] Network DNN &
CNN

Term Frequency and Inverse Doc-
ument Frequency and Logarithm
of Term Frequency weighting tech-
niques

Regression 7 3 7

[79] Device DEL Operational Code Sequence Classification 3 7 3
[12] Device DNN Statistical Signal Processing Classification 3 7 7
[41] Device CNN LSTM Classification 7 3 3
[81] Network DNN Deep-Feature Extraction and Se-

lection
Classification 3 7 7

[32] Device CNN Dual Disaggregation and Aggrega-
tion DL models

Regression 7 7 3

[13] Software DDL Multiple Concurrent Models Classification 3 7 7
[45] Software CNN Feature Selection and Grey Wolf

Optimization.
Regression 3 3 7

and security because of its capability to offer transparency
and integrity properties. However, it is still yet to mature for
consistency method and delay response.

DL has solved many problems in IIoT applications enabling
for a more secure environment and can be refined to provide
even better solutions. We envision that the outcome will
facilitate future research efforts in spreading new methods.
This work aims to be an introductory guide regarding IIoT
security in smart cities for students and professionals in the
industry, and a reference model for senior researchers.
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