
1

Development of mobile IoT solutions: approaches,
architectures, and methodologies

Naercio Magaia, Pedro Gomes, Lion Silva, Breno Sousa,
Constandinos X. Mavromoustakis, Senior Member, IEEE, and George Mastorakis

Abstract—Modern Living, as we know it, has been impacted
meaningfully by the Internet of Things (IoT). IoT consists of
a network of things that collect data from machines (e.g.,
mobile devices) and people. Mobile application development
is a flourishing tendency, given the increasing popularity of
smartphones. Nowadays, users are accessing their desired services
on the smartphone by means of dedicated applications as the
latter offers a more customized and prompt service. In addi-
tion, companies are also looking to persuade users by offering
interactive and effective mobile applications.

Mobile application developers are using IoT to develop better
applications. However, there is no generalized consensus on
the selection of best architecture or even the most suitable
communications protocols to be used on an IoT application de-
velopment. Therefore, this article aims at presenting approaches,
architectures, and methodologies relevant to the development of
mobile IoT solutions.

Index Terms—Mobile development, IoT, Methodology, Archi-
tecture.

I. INTRODUCTION

THE i-mode’s launch in 1999 by NTT Docomo gained na-
tionwide popularity in the Japanese mobile phone market

due to the fact of it being the first integrated online application
(app) store for mobile phones. Notably, the revenue-sharing
business model used by Docomo allowed content creators
and app providers to keep up to 91% of revenue generated
by i-mode subscribers, which also facilitated rapid i-mode
ecosystem growth [1]. Almost a decade later, Apple’s iPhone
and App Store were released, and the marketplace introduced
third-party app development and distribution to the platform,
which allowed consumers buying and transferring new apps.
The latter release also motivated the popularity growth of mo-
bile apps. After that, companies have been attempting to reach
out to as much consumers as possible via these apps, which
nowadays are a popular aspect in many business domains.
Some examples include entertainment and safety-critical apps,

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

N. Magaia, P. Gomes, L. Silva, and B. Sousa are with Faculty of Sciences,
University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal. (e-mail:
ndmagaia@ciencias.ulisboa.pt).

N. Magaia and L. Silva are also with LASIGE, Department of Computer
Science.

C. Mavromoustakis is with the Department of Computer Science, University
of Nicosia, 46 Makedonitissas Avenue, CY-2417, Nicosia, Cyprus (email:
mavromoustakis.c@unic.ac.cy).

G. Mastorakis is with the Department of Management Science and Technol-
ogy, Hellenic Mediterranean University, Agios Nikolaos, 72100, Crete, Greece
(email: gmastorakis@hmu.gr).

which contribute considerably to the profitable mobile device
market that is highly competitive, often releasing apps at a
high pace.

The Internet of Things (IoT) [2] and its development is
progressively affecting our lives, being the latter fostered by
the exponential growth in the number of things (i.e., objects)
connected to the Internet. An IoT is a gigantic network of
interconnected things such as mobile phones, coffee mak-
ers, washing machines, wearable devices, and so on. IoT
applications in the industry include predictive maintenance,
smart metering, asset tracking, self-driving vehicles, etc. It
is also becoming omnipresent at every level of the society,
for example, on smart roads, by pushing messages to the
driver, in smart homes, by controlling appliances through an
application running on the smartphone, in the field of smart
health, e.g., hospitals, care centers, by wearing accessories or
part of clothing, etc.

From a software engineering1 point of view, IoT applica-
tions, on the one hand, are distributed over a broad range
of processing nodes, and, on the other hand, have high
heterogeneity of the nodes and the protocols used between
them. The combination of the latter characteristics presents
some challenges, specifically: (i) IoT software should scale
both in the number of nodes as well as in the number of
types and platforms, conversely to other research areas where
homogeneity keeps software complexity manageable; (ii) IoT
system developers should leverage the diverse resources and
decentralized computing power provided by IoT devices, on
the contrary to existing tools and techniques that hide it hence
enabling developers to write apps that execute similarly on
different platforms; (iii) IoT applications should not be isolated
or proprietary, but rather combine generic, application-specific
and legacy things.

The development of IoT systems encompasses a set of
key abstractions, which could be deduced from the analysis
of general features [3]. First, it is necessary to identify the
actors, i.e., the system stakeholders and users. The latter will
own, manage, or even use the system and its functionalities,
therefore, the requirements should be elicited to them. Second,
a more comprehensive approach to requirements gathering
(i.e., functional and nonfunctional ones) should be performed
conversely to a simple understanding of the services that
things and groups of things should provide. Third, the things
involved in the requirements’ implementation can correspond

1Software engineering can be defined as a process by which someone (i.e.,
an individual or a team) organizes and manages the creation of complex
computer programs.



2

to a variety of objects and devices, depending on a multitude
of technologies and capabilities.

Certain software engineering processes can be leveraged
by companies to improve application development processes
hence gaining a competitive benefit [4]. Mobile application
development can be considered as similar to software en-
gineering given the existence of common issues such as
integration with hardware, traditional security issues, perfor-
mance, reliability, and storage limitations. Nevertheless, there
are some less commonly found requirements in traditional
software applications if compared to mobile ones, which
include potential interaction with other application, sensor
handling, the existence of native and hybrid (i.e., mobile web)
applications, families of software and hardware platforms,
security, user interfaces, the complexity of testing and power
consumption [5].

Given the generalized lack of consensus in IoT applications
development, this article aims at presenting approaches, ar-
chitectures, and methodologies relevant to the development of
mobile IoT solutions.

The remainder of this article is as follows. Section II and
III present IoT and AR concepts, respectively. Section IV
presents mobile development approaches and tools. Section V
presents the architecture patterns used in mobile development.
In Section VI, communication technologies between mobile
applications are presented. Section VII presents the concepts
of relational and non-relational databases. In Section VIII,
software development methodologies are presented. Section
IX presents an overview of a mobile solution integrating IoT
and AR. Sections IX and IX present challenges and open
issues, and future directions, respectively. Finally, Section XII
presents concluding remarks.

II. INTERNET OF THINGS

IoT is increasingly impacting our lives as all gadgets or de-
vices are already networked to communicate with each other.
There are sectors such as healthcare, security, surveillance, and
product management using IoT-based technologies, allowing
for a wealth of new services to meet users’ needs.

According to [6], an IoT system should contain the follow-
ing eight characteristics:

1) Heterogeneity. Due to the existence of several devices
and protocols.

2) Scalability. Due to the massive number of services that
should be available.

3) Ubiquitous data exchange. It allows the exchange of
information through wireless technologies. This is an
important point in the availability of a service, as it
can cause problems when there is no communication
between devices and services.

4) Optimized energy solutions. Because there is a huge
variety of devices and communications between them,
minimizing communications-related energy consump-
tion is a primary concern.

5) Localization and tracking capability. IoT entities can be
identified and provide short-range wireless communica-
tions through device location.

(a) The OSI model (b) The TCP/IP model

Fig. 1. The OSI and TCP/IP layer models

6) Self-organizing capability. Nodes in an IoT network
have the ability to organize autonomously into ad hoc
networks to provide the means to perform tasks and
share data without user intervention.

7) Semantic interoperability and data management. Due to
massive data exchange and device diversity, there is a
need to ensure interoperability between different appli-
cations by providing appropriate formats, languages, and
standards.

8) Security and privacy. An IoT system must ensure secu-
rity and preserve data privacy.

In the following sections, a set of most used architectural
styles for engineering IoT applications, that is, driving the way
IoT components shall be combined together, are provided.
Besides, sensors and actuators responsible for detecting and
affecting changes in the environment/equipment used in IoT,
and some of the most widely adopted IoT networking proto-
cols are also presented.

A. Architectural styles

Many styles have been proposed over the years, and the
following subsections list them based on their relevance.

1) Layered architecture: In 1974, Vint Cerf et al. [7]
described the TCP/IP model, i.e., a set of communications pro-
tocols used in computer networks. Almost a decade later, the
Open System Interconnection (OSI) model, which is a more
comprehensive reference architecture for general networking
systems, was formally adopted by ISO as an international
standard. Figure 1 presents the OSI and TCP/IP models.

As IoT applications grew in software deployments, there
was a need to create industry reference architectures. The
main objective was to facilitate interoperability and simplify
development. However, there is no consensus on an IoT
architecture that is accepted by all.

Similar to the ISO reference architecture, IoT architectures
can be classified based on layers, systems, and interactions
[8].

a) Three to five layers: The three-tier architecture came
first and was considered as the simplest as it represents the
basic idea of IoT being composed by perception, network,



3

(a) Five layers’ architec-
ture

(b) Fog architecture

Fig. 2. IoT Architectural styles

and application layers. The first refers to the physical layer,
where sensors are located to detect and gather information.
The second layer is responsible for connecting network devices
and their servers and can be used to transmit data. Finally, the
application layer provides user-specific services.

Because these layers are not sufficient in many IoT models,
it was necessary to create an architecture this time with five
layers maintaining the perception and application layers, and
adding the transport, processing, and business layers, as can
be seen in Figure 2(a). The transport layer is responsible for
transmitting the data received from the perception layer to the
processing layer. Various forms of transmission are used, such
as wireless or Bluetooth, using protocols such as IPv6 [9].
The processing layer primarily stores, analyzes, and processes
information from the transport layer. It can be designated as
middleware because it can manage and deliver services to
lower layers. Technologies such as cloud computing, database,
or large data processing are used in this layer.

2) Cloud and Fog based architecture: The cloud computing
model [10] is a very efficient alternative to the data center for
customers using web applications or large amounts of data.
In some system architectures, data processing is done through
computers in the cloud to achieve flexibility and scalability.
Cloud computing is typically divided into three levels, namely
Software as a Service (SaaS), Platform as a Service (PaaS),
Infrastructure as a Service (IaaS). In this system, the cloud
stores and analyzes all the data it receives. However, to avoid
the latter, fog computing was designed.

Fog computing [11] is a virtualized platform that provides
computing services, storage between end devices using cloud
computing. This new model presents a layered approach where
sensors and gateways that are part of the system containing
the ability to process and analyze data. As can be seen in
Figure 2(b), this architecture contains six layers designated
transport, security, storage, preprocessing, monitoring, and
physical. The monitoring layer controls resources, energy, and
service responses. The preprocessing layer acts as a filter for
data at the ends of a system.

3) SoA and Microservices: Service-Oriented Architecture
(SoA) is a standard that is applied at the architectural level in
the construction of enterprise software. It aims to separate and
specialize the components of the architecture so that they are

each owner of and responsible for a single service (function).
Besides that, these services have to be connected to each
other in the simplest way possible (with almost no knowledge
of each other’s internal implementation) through a common
protocol, such as a RESTful API. As the service modules are
like black boxes, the end result is transparency [12].

An SoA architecture is not made of a fixed set of organized
layers, but of practices that provide the evolution and scalabil-
ity of applications, and these practices are mostly to separate
each service in different nodes and let them communicate by
message exchange [13].

The goals of SoA are to have: standard communication
protocol, loose coupling, cohesion, composability, stateless,
each service to be autonomous, to provide meta-data about
itself, to do abstraction in such a way that the logic and
technology of the service are invisible outside of it.

Similarly, but at a more specific level, microservices are at
the level of the application, and not of the system architecture
from scratch. Each microservice has its own data and does not
necessarily need to share a common communication protocol
with other microservices. They are standalone applications,
which can scale better on their own, not necessarily needing
other applications in the business scope to do so as well.
It is debatable if there is a fundamental difference in both.
However, it is more appropriate to consider that microservices
is a case of SOA [14] since the differences are in the realization
of each and not precisely in the conceptual architectural
structure.

SoA and microservices are widely used. For instance, the
former is used due to the very nature of IoT, that is, a het-
erogeneous system, which needs to interoperate with different
types of data, protocols, sensors, energy requirements, among
others [15]. IoT devices can be seen as services. Each device
is self-contained, with its sensors and processors, and are
specialized in a particular task (e.g., measuring temperature,
filming, saving data), which meets both SoA and microservices
aspects [16].

In SoA, and particularly in microservices, it is desirable that
the various services know something about each other, which
is called the “health” of the service, so that eventually, one
service does not call another that does not work if it is possible
to have a substitute, hence preventing fault cascading. The
latter helps both to reduce the traffic itself from information
to non-functional nodes and adequately replace, if possible,
part of the system with calls to other parties [17].

4) Social IoT: Links between various devices should be
considered in the same way that humans form relationships.
There are three principles of a Social Internet of Things (SIoT)
system. The first principle is based on the ability to browse the
network to discover devices and services effectively and ensure
scalability. The second one emphasizes the degree of reliability
to take advantage of interactions between “friend” devices. In
the last one, models designed to study social networks can
be reused to address IoT-related issues, which is intrinsically
related to large networks of interconnected objects [18].

Given these principles, an architecture based on social
relations has been proposed. In it, the server-side architecture
has three layers: the first layer contains a database that stores



4

device details such as their attributes, meta information, and
their relationships. The second layer contains the code to
interact with devices, query their status, and use a subset of
them to provide a service. The third layer (i.e., the application
layer) provides services to users. On the device side, there
are two layers. The first one allows a device to connect to
another device and exchange information. The other layer,
which is called the social layer, allows executing requests and
interacting with the server application layer.

B. Sensors and Actuators
Many industrial activities contain sensors responsible for

detecting changes in the environment/equipment, which are
usually used in factories, customer houses, assembly lines or
even remote locations. For example, in areas such as servicing
or repairing equipment, the ability to use sensors on multiple
machines allows to realize or even anticipate problems. Many
of the sensors used in IoT are typically small, inexpensive,
and energy-efficient. First, let us consider sensors used daily
that are built into our mobile phone. A smartphone is a
useful and user-friendly device that has a number of integrated
communication and data processing features. Typically, such
devices have sensors such as an accelerometer, which allows
the user to measure speed in three dimensions, a gyroscope
that senses a user’s orientation, camera, magnetometer that
detects magnetic fields, GPS, light sensor, and the latest
already have humidity sensors. However, depending on the
business area, the purpose of a sensor is different. For example,
a pressure sensor (that is, a barometer and pressure gauge) can
be used in an industrial environment to detect and measure the
pressure of a gas, or an optical sensor to obtain fiber optics
information.

When talking about sensors, possible actuators should be
referenced. An actuator is a device that can affect a change
in an environment by converting electrical energy into some
kind of useful energy. Some examples of actuators are cooling
equipment, speakers, lights, and monitors. An actuator can also
alert a user to a problem through an alarm or notification.

C. Networking protocols
Figure 3 shows some of the most widely adopted IoT

networking protocols mapped to the TCP/IP model.
1) Link-layer technologies: IoT link-layer technologies cel-

lular, Wi-Fi, and Ethernet, along with more specific solutions
such as Low Power Wide Area Network (LPWAN), Bluetooth
Low Energy (BLE), ZigBee, NFC, and RFID [19]. Next, some
technologies are briefly described:

a) LPWAN: LPWAN is a technology intended for low-
power, long-range wireless communication, being best for
large-scale deployments of low-power IoT devices. Its tech-
nologies include Long Range physical layer protocol (LoRa),
Haystack, SigFox, Long Term Evolution for Machines (LTE-
M), and Narrow-Band IoT (NB-IoT).

b) Cellular: NB-IoT and LTE-M standards focus on
low-power, low-cost IoT communication in existing mobile
networks. They were built exclusively for IoT, although current
mobile technologies are also often adopted for long-range
wireless communication.

Fig. 3. IoT networking protocols considering the TCP/IP model

c) BLE: BLE is a low-power version of the popular
Bluetooth, being designed for short-range communication with
a single primary device controlling several secondary devices.
It is often used by personal IoT devices.

d) ZigBee: ZigBee has a longer range and a slightly
lower data rate than BLE. It was designed for building and
home automation applications.

e) Wi-Fi: Wi-Fi is a family of wireless networking
technologies based on the IEEE 802.11 family of standards.
Nonetheless, IoT devices might only use 802.11b/g due to
power conservation reasons.

2) Internet layer technologies: IoT Internet layer technolo-
gies include IPv6, IPv6 Low Power Wireless Personal Area
Network (6LoWPAN), and IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL) [19]. Specially,

a) IPv6: Nowadays, IoT applications usually use IPv6
over legacy IPv4, given the current number of connected
IoT devices. However, many IoT devices do not require
public addresses, therefore being deployed in private networks
and only communicating via gateways to external devices or
services.

b) 6LoWPAN: 6LoWPAN allows IPv6 to be used over
802.15.4 wireless networks. It is frequently used for wireless
sensor networks and in-home automation applications.

c) RPL: RPL is designed for routing packets over low-
power and constrained networks such as those implemented
over 6LoWPAN (e.g., wireless sensor networks), and can
compute the optimal path through network nodes’ graph-based
on dynamic metrics and constraints.

3) Application layer technologies: The application layer
acts as an abstraction that encompasses protocols that allow
communications between various applications. Traditional pro-
tocols used at the application layer were not an option for
IoT services due to the restrictions of low power and lossy
networks (LLNs) [20]. The following protocols are used to
update servers with current values of end devices and carry
application instructions to those devices [21].



5

Fig. 4. The publisher/subscriber model

a) Constrained Application Protocol (CoAP): CoAP is
a request/response protocol designed for Machine-to-Machine
(M2M) applications to ensure interoperability using the Hy-
pertext Transfer Protocol (HTTP) often used in combination
with 6LoWPAN over the User Datagram Protocol (UDP)
[22] protocol. It uses the Datagram Transport Layer Security
(DTLS) [23] for secure communications.

Although it was designed for the IoT and M2M communica-
tions, no built-in security features are included. DTLS running
on top of UDP is used to secure CoAP transactions. CoAP
is HTTP-compatible by design, although CoAP over DTLS’s
diverse packet structure might confuse HTTP servers [21].

b) Message Queue Telemetry Transport (MQTT): MQTT
is a publisher/subscriber-based messaging protocol designed
for M2M communications, that is, in low bandwidth situations
for IoT devices (e.g., sensors) on unreliable networks. Each
device can be a publisher that sends topic-based messages
to a broker or event bus, and a subscriber that receives this
automatic message whenever there is an update to a subscribed
topic. As an example, consider Figure 4, where client X
posted in the broker a temperature topic, and clients Y and Z
subscribed to this topic.

Even though running over TCP, MQTT have by design low
overhead if compared to other TCP applications, therefore
making it a suitable protocol for IoT compared to the CoAP
request/response method. Since CoAP is UDP based it has less
overhead; however, the probability of a packet loss is higher
compared to TCP.

For example, MQTT’s publish/subscribe architecture is
more suitable for the IoT than CoAP’s request/response as
messages do need to be responded to. That is, the MQTT
approach uses less network bandwidth and reduces message
processing, which also extends devices’ battery lifetime [24].

c) The Extensible Messaging and Presence Protocol
(XMPP): XMPP has been in use for over a decade and
has been used all over the internet, and by being an old
protocol, it may be insufficient to provide services needed
for new applications. However, it has been gaining much
attention as a protocol to be used for IoT. XMPP uses the TCP
protocol supporting the publisher/subscriber architecture as

well as request/response. It allows real-time communications
when it comes to small message volume and guaranteed
security through TLS/SSL. However, this protocol does not
provide QoS options that can make it impractical for M2M
communications [21]. Similar to MQTT, XMPP supports the
publish/subscribe architecture hence being more appropriate
for IoT if compared to CoAP’s request/response approach.
XMPP is primarily used with smart appliances.

d) Restful Services: The Representational State Transfer
(REST) [21] is not a protocol but an architectural style
that uses some HTTP methods to provide a request/response
messaging system. REST is important in IoT as it is supported
by all M2M cloud platforms (i.e., Amazon, Google, etc.) and
can be easily deployed on mobile devices. Nevertheless, most
M2M platforms do not support Hypertext Transfer Protocol
Secure (HTTPS). Instead, they provide authentication keys.
Another limitation of this architecture is related to the fact of
being difficult to implement [21].

Given the recent popularity of mobile apps, the extra over-
head caused by request/response protocols affects devices’ bat-
teries due to its continuous or long polling for values, mainly if
there are no new updates. Publish/subscribe approaches such
as MQTT or XMPP can avoid the latter issue. In contrast,
CoAP, which is the lightweight version of REST, has the same
disadvantages. Nevertheless, and conversely to REST, it can
be used by constrained resource devices as it runs over UDP.

e) Advanced Message Queuing Protocol (AMQP):
AMQP has emerged in the financial industry since it is a
standard used for messaging between applications and orga-
nizations. It can link systems, business processes to convey
the requested instructions reliably [25]. This protocol can
use several transport protocols, nonetheless, preferably uses
TCP to ensure reliability. It uses publisher/subscriber com-
munication messages. When there are network disruptions, it
ensures reliability when storing and forwarding messages. The
limitation of this protocol is related to the low success rate
when the bandwidth is low [21].

According to [26], [27], AMQP’s success rate increases
as the bandwidth increases, and it can send more messages
per second if compared with REST. In addition, an AMQP
environment spread across many continents and with thousand
users can process millions of messages per day [27]. Moreover,
JPMorgan uses AMQP to send 1 billion messages per day,
which are used in its mission-critical systems around the world
[28].

f) Websocket: The Websocket protocol [21] was cre-
ated to reduce Internet communication overhead by provid-
ing full-duplex communication (i.e., real-time simultaneous
data transmission). Websocket is not a request/response or
publisher/subscriber-based protocol and it runs over TCP,
allowing to use TLS/SSL over communications. However,
for the IoT aspect, there is a sub-protocol named Websocket
Application Messaging Protocol (WAMP) [29], which allows
the publisher/subscriber standard to be adapted. This protocol
has the same limitation as XMPP and REST, as both do not
provide QoS.

Differently from previous protocols, Websocket is neither
designed for resource-constrained devices nor suitable for IoT



6

applications because of its client/server-based architecture.
Nonetheless, it is secure and minimizes overhead, and can
provide efficient messaging systems if used along with WAMP
[21].

g) A comparison in light of an IoT application: In
[30], four application layer protocols, namely, CoAP, MQTT,
XMPP, and WebSocket, were compared in light of a smart
parking application using their open-source implementations
and aiming to measure their response time with different traffic
load.

MQTT and CoAP have a much higher response time if
compared to XMPP as they use a message queue to process
client requests. CoAP performs better at lower traffic load as it
benefits from using UDP. Conversely, MQTT performs better
since it uses some extra optimization features of the protocol.
XMPP performs better at low traffic load by transferring mes-
sages directly over a TCP connection meanwhile, WebSocket
uses an additional WebSocket handshake. However, as load
increases, the latter takes advantage of multiplexing to reduce
the mean response time.

D. Middleware

Ubiquitous computing is the core of the IoT model, thus
allowing all devices to be linked together. To ensure this,
there must be well-defined interoperability and standards in
these heterogeneous devices. The solution to abstracting these
standards and formats is to have a middleware platform that
acts as a software bridge between devices and the application.

According to [8], there are several middleware approaches,
and they can be classified according to their design:

a) Event-based: It is an event-based architecture, con-
sisting of two components: clients and brokers. Clients can
be event publishers or subscribers and use services provided
by the middleware to communicate. Brokers represent middle-
ware and provide a distributed implementation [31].

b) Service-oriented: It is based on the Service-Oriented
Architectures (SOA), containing independent modules that
provide services through the available interfaces. Certain fea-
tures are abstracted by a set of services used by the application.
There is a repository where services are placed, and clients can
access these services.

c) Database-oriented: In this approach, the IoT device
network is considered as a database system. Through an
interface, applications can query the database using a query
language.

d) Semantics: It is based on interoperability between
different devices. Devices incorporate different data formats
and ontologies and are linked to a framework, allowing the
exchange of this data. For each device, an adapter is required
to map N patterns to an abstract pattern. This technique allows
multiple physical resources to communicate with each other,
even if devices do not implement the same protocols.

e) Application-specific: This type of middleware is
specifically used in the application domain for which it is
developed, hence allowing adjusting the architecture based on
the requirements.

Table I lists IoT applications by type, domain, and usage.
According to type, they can be either Infrastructure or Smart

Things. The former, if IoT is used to maintain, scale, or
empower its underlying network, or the latter, if it goes to the
broad area of providing some intelligent, valuable computation
and structured data gathering from diverse resources. Applica-
tion domain refers to the vast identified areas of applicability;
meanwhile, application usage specifies its purpose.

III. AUGMENTED REALITY

Augmented reality (AR) offers a perfect interface to IoT
applications by adding an additional layer with virtual infor-
mation about smart objects and services with the user’s view of
the real world. Therefore, it allows the latter to interact with
the real-world object in addition to getting extra contextual
information about it, apart from information regarding adjacent
objects [139].

The following fundamental requirements define AR, namely
(i) combination of both contents (i.e., real and virtual), (ii)
instantaneous interaction, and (iii) precise alignment of both
real and virtual objects [140]. The latter requirements also
describe an AR system’s technical requirements. This system
can merge both objects (i.e., real and virtual ones), permitting
interactions with the consumer, being also possible to locate
users and virtual objects’ position via the tracking system.

Considering the enormous potential of AR and IoT, numer-
ous challenges exist to integrate them. However, (i) compre-
hending how more instinctive this connection can be made
remains a primary challenge for developing IoT or AR apps.
Besides, debug and repair faults by making use of real-time
IoT data, thus offering a better quality of service (QoS),
remains a challenge for entities using AR.

It is also important to comprehend the differences between
AR, virtual reality (VR), and mixed reality (MR), as they
all have the ability to alter our perception of the real world.
VR is a computer-created experience that allows a user to
interact with a virtual environment. AR is the overlap of digital
content in the real world. It is the most affordable technology
because people can use their smartphones or tablets to run
AR applications [141]. Lastly, MR concerns the fact that
the virtual object is superimposed on the real environment
allowing interaction with that same object.

A. AR Software Development Kits

With the increase of hardware performance on mobile
devices, numerous AR Software Development Kits (SDKs)
have emerged. AR SDKs allow introducing features such as
recognition, tracking, and rendering, within an application
[142]. The recognition component works like the AR “brain‘”,
the tracking component as the “eyes”, and the rendering
component is concerned with imaginary objects that can be
viewed through the mobile device.

Please note that the selection of the best AR SDK is made
according to the functionality of the mobile app envisioned.
Nonetheless, there are several major criteria that could be
taken into account such as:

• type of license, as there are free and commercial licenses.
Free functionality is typically limited, and to build a



7

TABLE I
CURRENT IOT APPLICATIONS BY TYPE, DOMAIN, AND USAGE

Type Domain Usage Publication(s)

Infrastructure

Networking 5G Internet of Things, Networking Provision, Middleware [32], [33], [34], [35], [36], [37],
[38], [39]

Computing Paradigms Fog, Cloud, Edge [40], [41], [42], [43], [44], [45],
[46], [47], [48]

Sensing and Sensor Sensing, Sensor [49], [50], [51], [52], [53], [54]
Computation and Storage Big Data, Data fusion [55], [56], [57], [58]

Infrastructure/Smart
Things

AI Deep Learning, Machine Learning [59], [60], [61], [62], [63], [64],
[65], [66], [67], [68]

Smart Things

Smart Cities Smart Parking, Traffic Congestion, Smart Lightning, Waste
Management, Smart Roads

[69], [70], [71], [72], [73], [74],
[75], [76]

Smart Environment Forest Fire Detection, [77], [78], [79], [80], [81]
Smart Water Potable Water Monitoring, Pollution levels in the sea, Chem-

ical Leakage Detection
[82], [83], [84], [85], [86]

Smart Metering Smart Grids, Silos Stock Calculation [87], [88], [89], [90], [91], [92]
Security and Emergencies Perimeter Access Control, Surveillance and Monitoring [93], [94], [95], [96], [97], [98],

[99], [100], [101], [102], [103]
Retail Intelligent Shopping Applications, Smart Product Manage-

ment
[104], [105], [106], [107], [108],
[109], [110], [111]

Logistics Item Location, Fleet Tracking, Food Supply, Supply Chain
Control

[112], [113], [114], [115], [116]

Industry M2M auto Diagnosis and Control, M2M Messaging, Indoor
Air Quality, Temperature Monitoring, Indoor Location

[117], [118], [119], [120], [121],
[122], [123], [124]

Smart Agriculture Green House Smart Monitoring, Smart irrigation, Meteoro-
logical Station Network, Fire Detection

[125], [126], [127], [128], [129],

Smart Farming Animal Tracking, Food Supply [130], [131], [132]
Smart Home Energy and Water Use, Remote Controlling, Home Integration [133], [134]
eHealth Patients Monitoring, Fall Detection, Viruses [135], [136], [137], [138]

function-rich mobile app, commercial ones may be nec-
essary;

• supported platforms, it is always advisable to check which
platforms the mobile app works with. Indeed, most SDKs
support both Android and iOS;

• smart glasses support, it would be advantageous to build
mobile apps compatible with smart glasses given their
recent popularity. They offer a way to overlay AR objects
on the real-world also allowing hands-free AR experi-
ences conversely to smartphones;

• Unity support, as it one of the most advanced game
engines actually, which is used to create games for
computers and consoles as well as being capable of
powering AR mobile apps;

• cloud recognition, which enables creating mobile apps
capable of recognizing lots of different markers by storing
them in the cloud instead of requiring much space on a
mobile device;

• 3D tracking, which allows creating mobile games and AR
apps for e-commerce by recognizing 3D objects, such as
cups, cylinders, boxes, toys.

• geolocation, which is essential for creating location-based
AR mobile apps, and

• Simultaneous Localization and Mapping (SLAM), which
allows applications to map an environment and track their
own movements in it.

Below, a reference will be made to the majority of AR
SDKs.

1) ArCore: ArCore [143] is an open-source framework
from Google for building AR applications. It uses three
features to integrate virtual content into the real world: motion

tracking, environmental understanding, and light estimation.
Motion tracking uses the camera and sensors such as the
accelerometer and gyroscope to find the user’s position and rel-
ative orientation, making it possible to move to different places
where the object will be in its initial position. Environmental
understanding allows the mobile device to detect the size
and location of all types of surfaces: horizontal, vertical, and
angular. Lastly, light estimation allows the mobile device to
calculate ambient light conditions. Another feature to consider
for ArCore is Cloud Anchor [14] since it allows multiple users
to see and interact with the same virtual object in the same
real environment. The main limitation of ArCore is the need
for mobile devices running Android OS higher than 7.0 and
iOS 11.0.

2) ArKit: ArKit [144] is a framework that combines real-
world images, virtual images, and sensors. The first version
of ArKit allowed the detection of 2D images. However, with
ArKit 2 it was possible to extend this functionality to allow
tracking of 2D images and add the ability to detect common
3D objects such as sculptures, toys, or furniture. Arkit can
automatically detect flat surfaces through characteristic points
and correlate those points with a vector. Both ArCore and
ArKit have the ability to add an anchor allowing virtual objects
to remain where they were initially placed, regardless of the
position of the advisor. However, ArKit is only available for
iOS.

3) Vuforia: Vuforia [145] is considered as one of the most
widely used SDK for developing AR applications. It allows
creating and managing one’s own markers (i.e., VuMark)
and has the ability to track flat images, use geolocation and
multiple targets simultaneously. It contains stable vision-based



8

image recognition techniques, allowing taking advantage of the
capabilities of mobile applications. Vuforia allows tracking of
five objects simultaneously, regardless of low light conditions.
Another feature is to let the application keep a consistent
reference even when targets are not visible.

4) ArToolkit: ArToolKit [145] is considered to be one of
the most widely used libraries for developing AR-enabled
applications, as it is a constantly updated open-source tool
that allows being exported to other platforms. Initially, this
library was designed to be used on computers rather than on
mobile devices because it was very challenging to implement
on the latter. Nevertheless, over time, it was necessary to adapt
this library for mobile devices. Its features include tracking
capability of any standard that has a square marker, tracking
fast enough to use real-time AR application, and supporting
multiple formats such as RGB, YUV, etc.

5) Wikitude: Wikitude [142] is an SDK that includes image
recognition, tracking, or rendering of 3D models and provides
location-based AR. Wikitude uses a hybrid approach because
it uses web technologies that allow developers to have aug-
mented reality experiences on various platforms [146]. These
experiments use an ARchictect interface to create AR objects,
so they can integrate the SDK into a mobile application
through a specific component called ArchitectView. Wikitude
allows loading 3D objects; however, none of the common
3D file formats are supported as it only supports Wikitude
3D Format (i.e., .wt3 format). To facilitate the conversion
of conventional .wt3 formats, it has developed a desktop
application (also known as Wikitude 3D encoder) allowing to
import formats such as *.fbx to *.wt3 [144]. The newly imple-
mented features include 3D model tracking and Simultaneous
Localization and Mapping (SLAM) functionality.

6) EasyAr: EasyAr [147] is a framework that offers a free
version with the ability to recognize and track QR code and
flat images. However, if there is a need to use SLAM or
3D object tracking functionality, one will need to purchase
the paid version, which can be seen as a limitation of this
framework.

IV. MOBILE APPLICATION DEVELOPMENT

Mobile application development is a complex process that
requires knowledge of different approaches. Certain factors
such as integration with the device hardware, security, perfor-
mance, reliability, and storage limitations should be taken into
account when developing mobile IoT applications [5]. Each
factor can be decisive for the proper functioning and success
of an application because each has its own advantages.

A. Mobile development approaches

Here, two development approaches are referred, namely
native and cross-platform.

1) Native Development: Native applications are built using
SDKs and platform-specific development tools, such as An-
droid Studio [148] for Google’s Android and Xcode [149] for
Apple’s iOS. The advantages of native mobile applications
are that they have full access to the device features, APIs
available on each platform, and the best possible performance

Fig. 5. The web Approach

[150]. When building very complex applications or using 3D
modeling, native development is the best approach, since it
requires access to external frameworks and libraries [151].
As stated by MGI Research entitled the Buyer Guide for
Mobile Enterprise Application Platforms (MEAP) [150], the
native architecture tends to offer a richer, more graphically
engaging user experience, high performance, and the ability to
integrate with features and capabilities of enterprise systems
backend. The main disadvantages are (i) the development time
of an application, as it is necessary to develop for the various
platforms, (ii) the costs, and (iii) the various programming
languages that need to be acquired.

2) Cross-platform development: There are four cross-
platform approaches to mobile application development,
specifically hybrid, web, interpreted, and cross-compiled.

a) The hybrid approach: The hybrid approach [152] is
considered as web and native because it uses technologies
such as HTML, CSS, and JavaScript, and runs within a virtual
machine from a mobile device. The main advantages of this
approach are that it can reuse the user interface on different
native platforms, as the business logic is platform-independent
and can use device resources. The main drawback is the
performance when compared to native applications, as they
require a web browser to run. The hybrid approach makes
use of a JavaScript abstraction layer. It is, therefore, more
susceptible to vulnerabilities, although it is possible to reuse
the user interface for multiple platforms, making the user
experience, not the best.

PhoneGap [153] is an example of a framework that follows
a hybrid approach, as it is a mobile application development
tool that uses web-programming languages such as HTML5,
CSS3, and JavaScript.

b) The web approach: The main feature of this type of
approach is that a mobile application does not need to be
installed on a mobile device as it is executed through a web
browser.

There are two ways to target this approach to mobile
devices: responsive web design and mobile web app [150].
In the first approach, developers focus on just modifying
the layout to fit a smaller screen. The only advantage is



9

Fig. 6. The cross-compiled approach

having only a single code through languages such as HTML,
JavaScript, and CSS. However, it limits the ability to create
an experiment for a mobile device. In the second approach,
mobile devices are detected and directed to an optimized
web application where an interface is created according to
specific conventions of the mobile device. The advantage of
this approach is that it is not necessary to create multiple
implementations of user interfaces. In addition to the above
advantages, it is important to note that the application and its
data are stored on the server, and no maintenance is required
on the mobile device. However, this can be a disadvantage as
it may have a performance lower than the other approaches
by being mobile network-dependent [152]. As can be seen in
Figure 5, on the left side is the browser of the mobile device
responsible for placing requests to the server. On the right side
is where all the business logic of the application and its data
are stored.

c) The interpreted approach: In this type of approach,
native code is automatically generated at runtime, having an in-
terpreter responsible for this task. The interpreter subsequently
interacts with an abstraction layer to gain access to the native
APIs of each platform.

The main advantages of this approach are the efficiency
of access to native interfaces and the reuse of business logic
for various platforms [154]. Performance can sometimes be
affected by access to this abstraction layer at runtime.

d) The cross-compiled approach: This methodology is
cross-platform as it uses a common programming language. As
can be seen in Figure 6, this approach makes use of a cross
compiler responsible for compiling this same language into
native code for a specific platform [154]. Its main advantage
is that it achieves the same performance as native applications
besides providing all native interface features. However, de-
spite allowing access to some device features such as camera
and GPS, if the app requires direct access to device hardware,
this approach is not the best and most efficient one [155]. It
is best used for simple applications.

(a) MVC

(b) MVP

(c) MVVM

Fig. 7. Architecture patterns

B. Mobile development tools

Mobile development tools are designed to assist in the cre-
ation of mobile applications. There are two types of platforms,
namely native and cross-platform. Native tools help to create
specialized apps that operate ease and high quality and can
take advantage of all features on their designated platform. On
the other hand, cross-platform tools enable creating a generic
app for multiple platforms simultaneously, significantly reduc-
ing the costs and time needed to create an app. However, non-
platform specific applications tend to have more issues and
lower quality compared to native ones.

1) Android Studio: Android Studio is the official Inte-
grated Development Environment (IDE) for Google’s Android
OS, based on JetBrains’ IntelliJ IDEA [156] software and
conceived in particular for Android development. This IDE
allows having a flexible build system, emulator, test tools,
frameworks, and tools for parsing code for error detection. By
default, there are three modules to provide access to files of
a project: manifest, java, res. The manifest module contains
all permissions and important information, the java module
contains all Java code files, including the test code, and the
res module holds all non-code resources, such as images, XML
layout, etc.

2) Xcode: Xcode is a development environment for de-
veloping applications for MacOS. Xcode provides tools for
building an application to its execution by providing support



10

for languages such as Swift and C. Integrated into this
development environment, the design interface next to the
implementation code can be visualized, allowing to get a visual
sense of the application.

3) ViroReact: ViroReack [157] is a cross-platform as it
allows developers to develop quickly Augmented Reality (AR)
applications using React Native. The latter allows creating
mobile applications using JavaScript. ViroReack allows to
reuse code for Android and iOS and get maximum hardware
performance for AR applications. The platform is comprised of
two components, namely the Native 3D rendering engine and a
React extension for Virtual Reality (VR) and VR development.
For the development of AR, it allows integrating frameworks
such as ArCore and ArKit.

4) Visual Studio: Microsoft Visual Studio [158] is an IDE
from Microsoft used to develop mobile apps as well as
computer programs. It uses Microsoft software development
platforms and can produce both native and managed code. Its
code editor supports, for example, IntelliSense, code refactor-
ing, integrated debugger, code profiler, and designer. It can
be used with many programming languages such as C++, C#,
JavaScript, TypeScript, XML, HTML, and CSS. Visual Studio
functionality can be significantly expanded via plug-ins. Visual
Studio Code [159] is a free, lightweight cross-platform source
code editor that runs on Windows, MacOS, and Linux.

5) Ionic: The Ionic Framework [160] is an open-source,
cross-platform toolkit for mobile as well as desktop app
development using web technologies (i.e., HTML, CSS, and
JavaScript) with support for user interface (UI) frameworks
such as Angular, React or Vue. It focuses on the app’s frontend
user experience and interaction, that is, controls, interactions,
gestures, and animations. It mimics native app UI guidelines
besides using native SDKs to bring together the best of the
UI standards and device features of native apps. Besides, app
developers can use the same code in various platforms through
adaptive styling.

V. ARCHITECTURE PATTERNS

In software engineering, an architectural pattern is a
reusable solution to a particular problem that occurs in a
given context. It is, therefore, crucial to understand how the
main parts of IoT systems are integrated and how data flows.
It is vital to have a good structure when developing IoT
software, and for that to happen, three patterns are presented
below: Model-View-Controller (MVC), Model-View-Presenter
(MVP), and Model View View Model (MVVM).

A. The MVC pattern

In software where the interface tends to change more than
the business logic, it is necessary to separate application
functionality from the interface. This pattern was one of the
first to be conceived, and it consists of three independent
components, namely View, Controller, and Model [161].

The Model component is responsible for managing busi-
ness logic and manipulating data. It responds to requests for
information about its state and to instructions to change that
state [162]. The Controller component interprets actions the

user provides, informing the Model and View components to
change the data/state as requested. For instance, there may
be multiple Controllers, each with a different functionality
associated with a master Controller. The View component aims
to present the data to the user, which is manipulated by the
Controller component and later by the Model.

Figure 7(a) shows the MVC structure where both the
Controller and View depend on the Model, the Controller to
update data, and the View to obtain this data. However, the
Model does not depend on anyone, and this is one of the
main benefits of this independence since it allows the Model
to be tested independently without affecting other components
[163].

The MVC pattern is a common approach for mobile appli-
cation development. The most essential operation of mobile
applications is to retrieve data from a data store and update
the user interface (UI) with the recently requested data taking
into account the inputs of the user. This pattern aims to
separate the components of the UI (View), core functionality
and data (Model), and the user inputs’ response (Controller).
An example of a mobile application using this pattern is given
in Section IX.

B. The MVP pattern

The MVP pattern [161] is a variant of MVC created
specifically for test automation, where the goal was to increase
the amount of code to be tested. The MVP pattern consists of
three components, namely Model, View, and Presenter [164].

The Model component has the same concept as MVC, that
is, it is responsible for responding to requests for information
about its state and to instructions to change that state. View is
the component responsible for displaying information, and in
Android, it represents, for example, activity.xml. The differ-
ence with MVC is the Presenter component. This component
aims to link the View and Model by responding to events and
changing the Model. In MVC, the Controller is responsible
for determining which Views will respond to any action,
beside sometimes executing actions based on the events on
the View. In MVP, which uses passive View pattern, actions
are forwarded by the View to the Presenter.

Figure 7(b) shows the MVP structure. The View captures
user events and sends them to the Presenter. The latter makes
a decision and updates the former. If necessary, it can also
communicate with the Model if information needs to be
updated.

C. The MVVM pattern

MVVM is a pattern derived from MVC. However, it was
initially designed especially for the Windows Presentation
Foundation (WPF) [161]. WPF is a Microsoft system that
renders user interfaces in Windows-based programs. MVVM
is a pattern that is easily adapted to development platforms
to separate the interface from the application logic, where the
View is the responsibility of a designer rather than the pro-
grammer. The MVVM pattern consists of three components,
namely View, ViewModel, and Model. The Model component
is responsible for responding to information requests. The



11

View component is responsible for displaying the information,
and in the case of WPF is defined using the eXtensible
Application Markup Language (XAML). In this pattern, Views
have a many-to-one relationship with ViewModels, meaning
different Views can use the same ViewModel. The ViewModel
component is an intermediary between the Model and the View
responsible for managing the View’s logic. This component
interacts with the Model for information and then sends it to
the View, where it will be presented to the user.

The Data Binding represented in Figure 7(c) is a mechanism
that allows linking what is presented in the View to the
contents of the Model. In data binding, the ViewModel does
not need to notify changes via code to the View, as the latter
itself knows when data is loaded [164]. An example of a
Data Binding-based implementation can be seen in [165]. The
ViewModel implements properties and commands to which
the View can bind and, in case of change, notifies that View
through events.

VI. REST AND SOAP

Web services are increasingly being used as a new emerging
technology for communication between mobile applications,
not being IoT applications an exception. Therefore, mobile
devices can use web services to establish communication
between a client and a server. Nowadays, the most essential
requirement is for these services to be uninterrupted and light
with regards to mobile communications [166]. Web services’
communication is based on the REST architecture and the
SOAP protocol.

A. Simple Object Access Protocol

The Simple Object Access Protocol (SOAP) is a com-
munication protocol used in web services that provides a
simple mechanism for exchanging structured information in
a distributed and decentralized environment using eXtensible
Markup Language (XML) [167]. One of the goals of SOAP
design is its simplicity and extensibility. This protocol can
be used on many systems ranging from message exchange
to remote procedure calls (RPC). RPC defines a convention
that can be used to represent procedure calls and responses.
SOAP messages consist of an envelope, header, and the body
of the message. The envelope identifies the XML document as
a SOAP message. The header contains the optional attributes
of the message, and the message body contains request and
response information.

B. Representational State Transfer

The Representational State Transfer (REST) [166] is an
architecture for providing standards between web computing
systems to facilitate their communication. REST-based web
services are easy to be used across mobile platforms because
client-server communication is accomplished through a single
request and response protocol. The main feature of a REST
architecture in mobile applications is that it is stateless (i.e.,
the server does not store any state about the client session),
which minimizes the volatility of the connections. It is based

on Uniform Resource Identifiers (URIs), hence being easy to
invoke the services. Generating a REST-based request does not
imply being technology-dependent; however, for web services,
it is common to use HTTP request through HEAD, POST,
PUT, GET, and DELETE operations. REST responses are
also based on HTTP, thus allowing obtaining a result through
specific codes, and their representation can be in various
formats (i.e., XML, HTML, JSON). Second, REST supports
all types of data; thus, it is not necessary to interpret/format
messages similarly to the SOAP protocol, in which parsing
of the XML message is required. As a result, REST Web
services provide greater flexibility with respect to the type of
data returned. Although the SOAP framework is more secure
compared to REST, factors such as integration complexity
related to processing issues and resource consumption levels
that apply to mobile applications, one can conclude that REST
proves to be the most appropriate approach for developing
mobile applications [168].

VII. RELATIONAL AND NON-RELATIONAL DATABASES

Besides communication between IoT applications, currently,
various application domains exist, and a tremendous amount
of data is foreseen to be produced by IoT devices. There-
fore, and with the generation of heterogeneous data, many
challenges arise in how to store, transfer or even manage
this data efficiently. This section revisits relational and non-
relational database concepts and discusses their suitability for
IoT applications.

A. Relational databases

Traditional databases, which use Structured Query Lan-
guage (SQL), are focused on consistency and follow the ACID
(Atomicity, Consistency, Isolation, and Durability) properties
when transacting [169]. Atomicity refers to transactions that
are performed or discarded, and there can be no partially
performed transactions. Consistency means that the system
reverts to the previous stable state by propagating this infor-
mation across all nodes when a transaction fails. In Isolation,
transactions are performed independently, and lastly, durability
refers to transactions that can be stored in records so that they
are not lost if there is a need to recover the system.

Relational databases contain a set of tables, each containing
columns with attributes and each row of the table representing
a single instance of data. This type of database works best
with structured data; nevertheless, existing some limitations
regarding scalability and complexity [170]. With the increase
of users and stored data, there is a need to ensure system
scalability and the possibility to distribute the database across
multiple servers. However, this causes problems because such
databases are not designed to function with partitioned data.
Another limitation is the complexity of working with relational
databases, as it requires converting all data into tables even
when data have not been designed for that.

B. Non-relational databases

Non-relational databases (NoSQL) do not rely on ACID
properties, but rather on BASE properties (Basically Available,



12

Soft state, Eventual consistency), giving priority to availability
and performance. The soft state consists of low data consis-
tency across all replicas, and eventual consistency indicates
that after any data change, the system does not have to
reflect these changes immediately. Over time the data will be
consistent across all replicas; however, consistency is not the
most valued in these properties.

There are five NoSQL database types, namely key-value
store, column-oriented, document-based, graph databases, and
object-oriented [170], [171], [172], [173].

• Key-value stores, as the name suggests, are a very effi-
cient type where values are indexed to a key, which allows
users to obtain formers by specifying only the latter.
They can store both structured as well as unstructured
data. When prioritizing fast searches where scalability is
considered rather than consistency and multiple storage
options, NoSQL is a good option. Examples of this type
are DynamoDB, RIAK, Redis, and Scalaris.

• Column-oriented databases contain one extendable col-
umn of closely related data, i.e., column family, con-
versely storing information in a structured table of rows
and columns. This method indexes data by row, column,
and timestamp. Rows and columns are identified by a key,
and timestamp allows differentiating between different
versions. Examples of this type are Cassandra, Hyper-
Table, and Hbase.

• Document-based stores refer to databases that store in-
formation in the form of documents whose formats
are XML, JSON, etc. Documents are indexed using a
unique key that represents it. However, they are more
complex compared to the information that is stored in
the Key-value type. This type offers great performance
and a horizontal scalability option. Examples of this type
of database are SimpleDB, Terrastore, MongoDB, and
CouchDB.

• Graph databases store information through a graph con-
taining nodes and edges, where nodes act as objects and
edges as the link between objects. It uses a free adjacency
index technique, where each node points to the next node.
This method is ACID-compliant and very scalable. An
example of this type is Neo4j, Titan, and OrientDB.

• Object-oriented databases, data is stored as objects. This
type of database can be considered as being a combina-
tion of object-oriented programming and database prin-
ciples. Object-oriented is only faster when the database
is object-oriented and not when the data type is simple
and without large relationships. An example of this type
is db4o.

NoSQL’s main advantages over SQL include providing
several easily scalable data models, not having a database
administrator, being fast, efficient, and flexible, and managing
hardware failures [172]. However, not only does it have
advantages compared to relational databases, but it also has
disadvantages such as the lack of a query language, being
recent, and being more difficult to maintain.

C. SQL and NoSQL Databases from an IoT Perspective
As previously mentioned, SQL Database stores data in a

tabular form (i.e., rows and columns) following a relational
data model. In such a model, associated tables may be linked
collectively. On the other hand, NoSQL databases support
schema-free storage of data in various forms, such as doc-
ument, graph, among others.

From an IoT perspective, in the selection of the right
database between the two, the following requirements need
to be considered:

1) scalability, given that SQL and NoSQL support vertical
and horizontal scalability, respectively. SQL is more
related to the ability to increase a single node’s per-
formance with the addition of resources such as mem-
ory or processors to it. NoSQL consists of increasing
the number of nodes, thereby sharing the load among
them. Horizontal scaling is more appropriate for IoT
application as it allows for future expansion whenever
necessary, therefore avoiding a high initial investment;

2) data retrieval, the speed of data retrieval is a must
from an IoT point of view due to the need to fetch
data for further processing from the database. SQL join
statements may be a time-consuming process because
of the structured nature of the database, in opposition
to NoSQL, where the need to combine and then display
data is reduced, which saves response time;

3) security, given the need to transfer sensitive data in many
IoT applications, secure communication channels are
desirable. However, most organizations are not famil-
iarized with NoSQL technology, which can be prone to
security issues, which is different from SQL that is more
mature and has support for many security features such
as authentication, data confidentiality, and integrity.

For instance, an IoT application could use a NoSQL
database to analyze the relationships between different sensors,
the environment where they are, how they are being used, etc.,
on the contrary, to simply connecting a sensor to the cloud and
logging the data, which can be the case of an SQL one. In
addition, a comparison of three databases, namely Cassandra
and MongoDB (NoSQL databases), and PostgreSQL (SQL
database) regarding data writing and reading operations is
performed [174]. If there is only one client, both MongoDB
and PostgreSQL achieved superior performance when per-
forming write and read operations. If there are several clients
and multiple orders, only Cassandra could perform a greater
number of operations.

In summary, NoSQL is more appropriate to store IoT data
due to its horizontal scalability, schema-less storage, support
for unstructured data.

VIII. SOFTWARE DEVELOPMENT METHODOLOGIES

One of the first decisions faced when developing an IoT
project is which development methodology should be used.
The software development life cycle is a process of building
software systems that includes several phases, from prelim-
inary analysis to testing and evaluation [175]. Here, the
software development lifecycle is grouped in traditional and
Agile methodologies. On the other hand, there are several
traditional methodologies, such as Waterfall, V-Model, and
Unified Process.



13

A. Traditional methodologies

Traditional methodologies [175] emerged in a context where
the cost of making changes to software was very high, and
there was a need to plan and document everything before
any implementation. Although there are several processes for
software development, these methodologies are based on a
sequential series of steps: requirements definition, design and
planning, implementation, and testing. Each step can only be
started after the end of the previous step is approved, and there
is hardly any return.

The steps are:
1) The first phase allows determining the characteristics

of a project, i.e., understand the requirements, their
constraints, and the time it will take to carry out the
various phases of the project.

2) The architectural design and planning phase allows un-
derstanding issues that may arise throughout the project
and provides a guide for those participating in the
project.

3) In the development phase, the project is segmented by
several teams and developed according to specifications.

4) Testing steps usually overlap the development phase to
ensure that the issues in the various steps are resolved
early on. When the project is being finalized, the client
will participate in the tests in order to get feedback.

The success of these methodologies depends on the re-
quirements analysis and previous knowledge acquired. The
primary concern of programmers is no longer meeting the
requirements that were set at the beginning of the project, but
rather leaving the customer satisfied with the final delivery
[176]. This would only be possible if there were changes in
the scope of the project by modifying the requirements and
technologies previously established.

B. Agile methodology

In the early 1990s, Ken Schwaber and Jeff Sutherland
developed the Scrum, which is an Agile process framework,
to help organizations struggling with complex development
projects. Despite also being used to explore other intricate
work, research, and advanced technologies, Scrum’s emphasis
is on software development.

In 2001 when Ken, Jeff, and other experts came together to
discuss software development processes, the Agile ’Software
Development’ Manifesto [177] emerged. This methodology
has had a significant impact on the way software is developed,
as it allows methods to deal quickly with various changes,
deadlines, and needs throughout the project. This methodology
is based on the following values: (i) interactions between indi-
viduals, processes, and tools, (ii) functional software according
to documentation, (iii) client collaboration in contract negoti-
ation, and (iv) the ability to respond to changes following a
plan [178].

Interactions between individuals allow the exchange of in-
formation, minimize the necessary documentation and, if nec-
essary, make changes. There are many agile methods such as
Agile Modeling, Extreme Programming (XP), Scrum Develop-
ment, Dynamic Software Development Method (DSDM), Fea-

ture Driven Development (FDD), Adaptive Software Devel-
opment (ASD), Kanban, Lean Software Development (LSD),
Rapid Application Development (RAD), Scrumban, and Crys-
tal Methodology [179]. Each one of these methods addresses
different perspectives from this methodology. For instance,
DSDM requires prototyping to understand the areas of most
significant risk; meanwhile, Scrum emphasizes daily meetings
where work is being done. The top priority of agile methods is
to deliver value to customers frequently, besides the return on
investment [175]. The big difference with traditional methods
is the ability to deliver results cheaply, quickly, and with re-
quirements that can still be changed. Agile methods emphasize
teamwork and rapid response to change, while conventional
methods prioritize contracts, plans, and working documents.

C. IoT Software Development

Nowadays, organizations are trying to implement agile
methodologies for IoT development conversely to traditional
methods such as waterfall that are collapsing under the enor-
mous weight of the IoT. That is motivated by the fact that in
the past, the development process stopped with deployment.
However, with IoT, there is a growing expectation for post-
deployment content and updates, which means that organi-
zations need enhanced change and management solutions as
well as to think about testing over an even greater development
cycle.

Alternatively, Agile methodologies are specially equipped
for dealing with the requirements of the connected device.
Given that frequent updates are essentially a requirement with
Agile, the desire of the end-user is satisfied with a constantly
updated device. In addition, it also satisfies the need of the
developer for a manageable development schedule and the
business requirements to respond promptly to market needs.

Usually, development tended to happen in silos; that is, each
team focused on their specific task to carry the project to
completion. With IoT, user expectations fuel the need for more
collaboration between teams, which is the aim of the agile
methodology. With it, teams are expected to able to collaborate
on products in brand new ways, which will result in shorter
lead times, faster overall development efficiency, and more
product updates and releases.

The complexity of IoT and traditional application develop-
ment is similar since the result is a system to be developed
[180]. Nonetheless, and due to the nature of IoT devices, there
is an extra layer of difficulty in developing IoT applications,
which are considered their major challenge to be solved.
Specifically, the management of a large number of devices in
a distributed way, in addition to intermittent connectivity and
latency in communication, which compromises the reliability
of the messages exchanged.

Table II presents some of the challenges for the development
of IoT applications.



14

Fig. 8. Overview of a mobile solution integrating IoT and AR

TABLE II
CHALLENGES FOR THE DEVELOPMENT OF IOT APPLICATIONS

Distributed Computing Deployment-in-the-Large and Rapid
Deployment Cycles

Other Important Emerging Trends and Predictions

Heterogeneity and Diversity of Devices – the variety
of devices connected to the network presents char-
acteristics that must be considered in the process
of implementing new functionalities, as well as the
computational resources available for use.

Number of IoT Devices – the delay
in system development can be directly
influenced by the number of devices on
the network by placing an additional
layer of complexity in its management.

Cellular IoT Radio Technologies – the communi-
cation of IoT devices will be performed through
Cellular IoT Radio Technologies with the Cloud
without the need for additional Bluetooth settings or
Wi-Fi security mechanisms.

Unreliable Connectivity – the size and complexity of
the IoT network grow as new devices are connected,
contributing to the delay in messages and difficulty
in managing routes to minimize their effects, which
can make the data collected unreliable.

Delay and Synchronization – as IoT
devices can perform critical tasks, the
software update process may have to
be delayed and synchronized until all
devices receive the updates.

Intelligence – intelligent mechanisms will enable
data processing and management via edge devices
by removing centralized processing from cloud ap-
plications.

Software Fault-tolerant – the occurrence of network
failures should be a factor to be considered when
implementing the systems since the data collected by
the IoT sensors are unique, and their non-processing
could drastically influence the performance of the
generated output.

DevOps methodologies – System up-
dates can occur in different phases
throughout the day.

Isomorphic IoT system architectures – is about in-
creasing the resource capacity of IoT devices, for
which they have supported new applications, in ad-
dition to facilitating the migration of applications.

IX. AN OVERVIEW OF A MOBILE SOLUTION INTEGRATING
IOT AND AR

The impacts of AR and IoT on Field Force Management2

focus essentially on optimizing time and costs when a piece of
equipment needs maintenance because it allows a technician to
obtain and view information that is difficult to obtain manually.
Approximately 50% of the time used to maintain a piece
of equipment is spent exclusively in locating/identifying the
problem [181]. Besides, the use of AR and IoT in maintenance
procedures can reduce the time of a task and the mistakes that
could be made. Repairing modules by viewing a 3D model
of the equipment or obtaining sensor information and repair
instructions are examples where AR and IoT can be adopted.
In addition to these features, the ability to have a sensor-
equipped infrastructure allows to anticipate and prevent future
problems, significantly reducing equipment downtime.

2Field Force Management is the department responsible for managing a
company’s resources or employees.

The main motivation here is the development of a mo-
bile application to provide support in troubleshooting and
prevention of equipment problems. Thus, by using IoT, one
can obtain certain information from a device and view it
together with the 3D model of the device using AR in a
mobile application. Another motivation is the support of AR
instructions to make the repair of equipment more efficient.

Figure 8 presents a description of the solution, including
the different IoT and AR components. The mobile solution
overview can be segmented into three blocks, namely devices,
cloud, and mobile. The cloud block uses Azure PaaS services
to create IoT solutions. IoT devices contain sensors connected
directly to a machine and can log securely to the cloud to
send and receive data. The Cloud gateway is responsible for
receiving information from devices. Azure IoT hub [182]
is a service that enables reliable two-way communications
between IoT devices and the solution backend. In this case,
it is a message broker between the devices and the data
transformation service. Data transformation manipulates the



15

Fig. 9. Mobile solution architecture

telemetry flow, for instance, by converting various types of
data into JSON format, which in this particular case is called
Function APP and serves to extract information from events
that were generated. Azure features have integration with the
IoT hub and Cosmos DB. Cosmos DB is classified as a
NoSQL database that receives the information from the IoT
hub and then generates a collection of documents with the
same information. Each device contains a unique identifier (id)
so that information can be stored in the database according to
this id.

In the mobile solution block, an android SDK is used for the
SQL Application Programming Interface (API) of the Azure
Cosmos DB in order to obtain the stored information. The
SDK is used as a database interface that supports offline
persistence of reading and writing documents. When it is
necessary to have access to documents stored in the database
of their devices, a user, through SQL queries, can get the
information to later view in AR.

In the AR component, another SDK called ArCore, which is
an open-source framework from Google to create AR applica-
tions, is used. In this context, ArCore is used to reproduce the
3D models of an object and, in addition, with the information
stored in the Cosmos DB from IoT, visualize its respective
problems in that same 3D object.

As can be seen in Figure 9, the mobile solution is divided
into three layers: (i) the presentation layer; (ii) the application
layer; (iii) the data access layer. This solution was built based
on the MVC architecture standard; and , in Figure 9 the View
can be seen as the User Interface, the Controller can be seen as
the Application Logic, and the Model can be seen as the Data.
The user interface, as its name suggests, is the layer that makes
the user interact with the application. In this layer are located
all the XML files responsible for the content presentation.

Application logic is the layer responsible for managing
communication between the user interface and database. It
acts as an intermediary between the mobile application and the
database, querying whenever necessary to retrieve or change
data in the database.

The data access layer corresponds to the connections made
to the database where the information is stored. In the mobile
solution, it corresponds to classes responsible for querying
Cosmos DB through an SDK, which serves as an interface
with the database. Whenever there are certain events at the
application layer, it communicates with the data access layer
that later communicates with the database. Sometimes the

application layer can also communicate with the database due
to the asynchronous tasks that the application is performing.
This wire standard was adopted due to its great use in android
applications and ease of implementation.

X. CHALLENGES AND OPEN ISSUES

With the exponential increase in the number of devices
that constitute the IoT network, besides their diverse mobility
characteristics and heterogeneity, the challenge of developing
optimized mobile IoT solutions that meet the application
requirements and the nodes that provide network services
increases. Below, some of the problems that need to be better
addressed are listed:

• Delay: The message exchange delay between different
devices working or not in a coordinated manner plays a
fundamental role so that the problem of information loss
is reduced. Developers need to ensure that the minimum
amount of information is lost, for example, when high
packet delay or loss occurs [183], [184].

• Communication Protocols: The selection of a communi-
cation protocol to develop mobile solutions in different
situations depends on the development team [185]. The
development of new protocols or modifications of exist-
ing solutions is a nontrivial task since it must support
numerous devices exchanging data over the network
without reducing the network nodes’ performance.

• Data management: The development team needs to take
into account different aspects such as the secure storage
of collected information and the design of optimized
systems that are capable of performing queries in large
databases, in addition to ensuring the lowest consumption
of devices’ resources. Besides managing the storage,
information security aspects must be brought to light by
developers, such as the development of contingency mea-
sures in the occurrence of data failure or inconsistencies,
access control to the collected data, among others.

• Design and Development: Good software quality is a
vast field [186], and developers have to not only produce
applications but also produce them in a way that is modu-
lar, easy to understand, maintain, evolve, and capable of
scaling. The right choice of architectural standards and
design patterns directly affect how much maintainability
the application will have over time, as well as providing
a low Technical Debt for later development teams [187],



16

[188]. Bad architectural design is an easy issue to slip
into and leads to application crashes, inconsistent user
interface, high energy expenditure, besides making main-
tenance difficult over time. The first two factors affect the
user experience, and many users abandon the application
in its first uses [189]

• Architectural Pattern: During the system development
process, developers can choose architectural patterns for
software development according to their experiences. The
latter is not trivial as it is necessary to take into account
some characteristics of the system to be developed [190],
that is, (1) dynamic scenario, as the devices’ behavior
varies according to the environment; (2) complexity, due
to the different communication technologies, protocols
and device characteristics; (3) reliability, as the system
modeling process must bring to light the reliability re-
quirement to reduce problems in information exchange
between different devices; (4) security, as it must be
guaranteed that information exchanged between third
party systems is not performed in an unauthorized way;
(5) software and hardware integration, given the need
to ensure integration between different hardware and
software.

In addition to the challenges that increase the level of
complexity for the development of optimized mobile IoT
solutions, the following aspects should also be considered:

• Quality Control: As mobile IoT apps gain complexity and
are applied in critical areas such as healthcare, developers
need to ensure that apps are error-free and safe, as they
can put human lives at risk.

• User-Friendly Design: developers need to provide so-
lutions that are not complex at the level of utilization.
However, such solutions must be robust, reliable, and
customizable according to the case.

• Cross-Platform Deployment: IoT devices are heteroge-
neous at the hardware and software levels, and different
operating systems, protocols, and architectures can be
used in real application scenarios. Developers should
consider such features when developing mobile IoT so-
lutions.

XI. FUTURE DIRECTIONS

The development of mobile IoT solutions goes through
different processes of analysis and validation of the proposed
solutions, whether regarding security and privacy aspects,
resources management, or data gathering/storage, among oth-
ers [191], [192]. To this end, some of the open research
opportunities are listed below:

• Privacy: The gathering of personal information by IoT
devices occurs in a broad manner and without clearly
specifying which data or information is being collected
and processed, in addition to the lack of appropriate secu-
rity mechanisms to ensure that confidential information is
not public or even that no information leakage occurs. For
instance, in 2018, the General Data Protection Regulation
(GDPR) [193] was introduced by the European Union
to regulate the gathering and processing of personal in-
formation in computing environments. Compliance with

the regulation applied to the mobile IoT solutions is a
broad and promising field to be explored, as different
personal devices are in a constant process of collecting
and processing user data.

• Deep Learning (DL): The development of applications
that use optimized computing resources is one of the
significant challenges of IoT, as new services/applications
arise that demand greater availability of resources. The
use of DL, in the context of mobile IoT, allows its use
in different scenarios such as data collection and anal-
ysis [194], [195], task optimization [196], IoT network
optimization [197], among others.

• Security: Although a great effort is put into devel-
oping new security tools and methodologies, the dy-
namic mobile IoT landscape enables the appearance of
new security breaches that can compromise the appli-
cation/device/network and information theft. However,
even if different techniques and mechanisms, coupled
with Artificial Intelligence algorithms, are widely pro-
posed/adopted, different attacks remain without 100%
detection rates or optimized solutions.

• Augmented Reality: The use of augmented reality (AR)
has been gaining space in recent years by being applied
in the various scenarios of IoT applications. The de-
velopment of mobile applications encompasses different
areas of knowledge, ranging from health [198], education
[199], and industrial [139] applications. An in-depth
study of how the dynamic characteristics of IoT devices
can influence the performance of AR solutions, as well
as the modeling process of IoT systems, can be affected
by their use, is necessary.

XII. CONCLUSION

The popularity of mobile apps has escalated almost three
decades since their first appearance. These days, businesses
from several domains use mobile apps strategically to reach
as many customers as possible. IoT, on the other hand,
is an ecosystem of networked devices that share data to
improve efficiency and to serve customers better. Mobile
app development can be used to manage and improve the
apps development process, therefore, enabling companies to
gain a competitive advantage. It also provides support in
troubleshooting and prevention of equipment problems. Ad-
ditionally, the ability to have a sensor-equipped infrastructure
allows, for example, to anticipate and prevent future problems,
significantly reducing equipment downtime and costs.

ACKNOWLEDGMENT

The authors would like to thank Ana Paula Afonso. This
work was sponsored by FCT through the LASIGE Research
Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020.

REFERENCES

[1] M. J. Cronin, Smartphones and wireless services. Cambridge Univer-
sity Press, 2010, p. 135–168.

[2] Z. Rashid, J. Melià-Seguí, R. Pous, and E. Peig, “Using Augmented
Reality and Internet of Things to improve accessibility of people with
motor disabilities in the context of Smart Cities,” Future Generation
Computer Systems, vol. 76, pp. 248–261, nov 2017.



17

[3] F. Zambonelli, “Key abstractions for iot-oriented software engineering,”
IEEE Software, vol. 34, no. 1, pp. 38–45, Jan 2017.

[4] R. Jabangwe, H. Edison, and A. N. Duc, “Software
engineering process models for mobile app development:
A systematic literature review,” Journal of Systems and
Software, vol. 145, pp. 98 – 111, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218301638

[5] A. I. Wasserman, “Software engineering issues for mobile application
development,” in Proceedings of the FSE/SDP Workshop on the
Future of Software Engineering Research, FoSER 2010. New York,
New York, USA: ACM Press, 2010, pp. 397–400. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1882362.1882443

[6] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, sep 2012.

[7] V. G. Cerf and R. E. Kahn, “A protocol for packet network inter-
communication,” Computer Communication Review, vol. 35, no. 2, pp.
71–82, 2005.

[8] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols,
and Applications,” Journal of Electrical and Computer Engineering,
vol. 2017, pp. 1–25, jan 2017.

[9] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du,
“Research on the architecture of Internet of Things,” in 2010 3rd
International Conference on Advanced Computer Theory and Engi-
neering(ICACTE). IEEE, aug 2010, pp. 484–487.

[10] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing Recommendations of the National Institute of
Standards and Technology,” Tech. Rep. [Online]. Available:
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the first edition
of the MCC workshop on Mobile cloud computing - MCC ’12. New
York, New York, USA: ACM Press, 2012, p. 13.

[12] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R.
B. C. Hussin, “Understanding Service-Oriented Architecture (SOA):
A systematic literature review and directions for further investigation,”
Information Systems, vol. 91, p. 101491, 2020. [Online]. Available:
https://doi.org/10.1016/j.is.2020.101491

[13] E. El-Sheikh, A. Zimmermann, and L. C. Jain, “Emerging Trends and
Enterprise Service-Oriented in the Evolution of Architectures,” Intelli-
gent Systems Reference Library, vol. 111, pp. 1–265, 2016. [Online].
Available: https://www.springer.com/gp/book/9783319405629

[14] O. Zimmermann, “Microservices tenets: Agile approach to service
development and deployment,” Computer Science - Research and
Development, vol. 32, no. 3-4, pp. 301–310, 2017.

[15] H. Muccini and M. T. Moghaddam, “Iot architectural styles,” in
Software Architecture, C. E. Cuesta, D. Garlan, and J. Pérez, Eds.
Cham: Springer International Publishing, 2018, pp. 68–85.

[16] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116,
Jan 2015.

[17] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices ap-
proach for the internet of things,” in 2016 IEEE 21st International Con-
ference on Emerging Technologies and Factory Automation (ETFA),
Sep. 2016, pp. 1–6.

[18] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social Internet of
Things (SIoT) – When social networks meet the Internet of Things:
Concept, architecture and network characterization,” Computer Net-
works, vol. 56, no. 16, pp. 3594–3608, nov 2012.

[19] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[20] A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of
enabling technologies, challenges, and open research issues,” Computer
Networks, vol. 144, pp. 17–39, oct 2018.

[21] V. Karagiannis, F. Vázquez-Gallego, P. Chatzimisios, F. Vazquez-
Gallego, and J. Alonso-Zarate, “A survey on application layer protocols
for the Internet of Things Communication Protocols for the Internet of
Things (IoT) View project Channel Hopping and Blacklisting Strategies
to Improve the Performance of IEEE 802.15.4 TSCH View project A
Survey on Application Layer Protocols for the Internet of Things,”
Tech. Rep., 2015.

[22] J. Kurose and K. Ross, Computer Networking - A top-down approach.
Pearson, 2012.

[23] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” Tech. Rep., 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5246

[24] D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan, “Performance
evaluation of mqtt and coap via a common middleware,” in 2014 IEEE
Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), April 2014, pp. 1–6.

[25] S. Vinoski, “Advanced Message Queuing Protocol,” IEEE Internet
Computing, vol. 10, no. 6, pp. 87–89, nov 2006.

[26] F. T. Johnsen, T. H. Bloebaum, M. Avlesen, S. Spjelkavik, and B. Vik,
“Evaluation of transport protocols for web services,” in 2013 Military
Communications and Information Systems Conference, Oct 2013, pp.
1–6.

[27] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah,
“Performance evaluation of restful web services and amqp protocol,”
in 2013 Fifth International Conference on Ubiquitous and Future
Networks (ICUFN), July 2013, pp. 810–815.

[28] Advanced Message Queuing Protocol, “Products and Success Stories,”
2017. [Online]. Available: http://www.amqp.org/about/examples

[29] Crossbar.io Technologies GmbH, “The Web Application Messaging
Protocol — Web Application Messaging Protocol version 2
documentation.” [Online]. Available: https://wamp-proto.org/

[30] P. Kayal and H. Perros, “A comparison of iot application layer protocols
through a smart parking implementation,” in 2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), March 2017, pp.
331–336.

[31] P. Pietzuch and J. Bacon, “Hermes: a distributed event-based middle-
ware architecture,” in Proceedings 22nd International Conference on
Distributed Computing Systems Workshops. IEEE Comput. Soc, pp.
611–618.

[32] S. K. Lee, M. Bae, and H. Kim, “Future of IoT networks: A survey,”
Applied Sciences (Switzerland), vol. 7, no. 10, pp. 1–25, 2017.

[33] S. Li, L. D. Xu, and S. Zhao, “5G Internet of Things: A survey,”
vol. 10, pp. 1–9, 2018.

[34] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A Survey on 5G Networks for the Internet of Things: Communication
Technologies and Challenges,” vol. 6, pp. 3619–3647, 2017.

[35] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things
(IoT) Toward 5G Wireless Systems,” vol. 7, no. 1, pp. 16–32, 2020.

[36] Y. B. Lin, H. C. Tseng, Y. W. Lin, and L. J. Chen, “NB-IoTtalk: A
Service Platform for Fast Development of NB-IoT Applications,” IEEE
Internet of Things Journal, vol. 6, no. 1, pp. 928–939, 2019.

[37] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A
survey of LoRaWAN for IoT: From technology to application,” Sensors
(Switzerland), vol. 18, no. 11, 2018.

[38] R. S. Sinha, Y. Wei, and S. H. Hwang, “A survey on LPWA technology:
LoRa and NB-IoT,” pp. 14–21, 2017.

[39] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT
Middleware: A Survey on Issues and Enabling Technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, 2017.

[40] F. Jalali, S. Khodadustan, C. Gray, K. Hinton, and F. Suits, “Greening
IoT with Fog: A Survey,” in Proceedings - 2017 IEEE 1st International
Conference on Edge Computing, EDGE 2017, 2017, pp. 25–31.

[41] F. Jalali, A. Vishwanath, J. De Hoog, and F. Suits, “Interconnecting Fog
computing and microgrids for greening IoT,” in IEEE PES Innovative
Smart Grid Technologies Conference Europe. IEEE, 2016, pp. 693–
698.

[42] K. Ahmad, O. Mohammad, M. Atieh, and H. Ramadan, “IoT: Archi-
tecture, Challenges, and Solutions Using Fog Network and Application
Classification,” in ACIT 2018 - 19th International Arab Conference on
Information Technology. IEEE, 2019.

[43] O. Salman, I. Elhajj, A. Chehab, and A. Kayssi, “IoT survey: An SDN
and fog computing perspective,” Computer Networks, vol. 143, no.
2018, pp. 221–246, 2018.

[44] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and
A. Zanni, “A survey on fog computing for the Internet of Things,”
Pervasive and Mobile Computing, vol. 52, pp. 71–99, 2019.

[45] F. Li, M. Vögler, M. Claeßens, and S. Dustdar, “Towards automated
iot application deployment by a cloud-based approach,” in Proceedings
- IEEE 6th International Conference on Service-Oriented Computing
and Applications, SOCA 2013, 2013, pp. 61–68.

[46] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and
Informatics Journal, vol. 1, no. 1-2, pp. 35–46, 2016.

[47] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A Survey on the Edge Computing for the Internet of Things,” IEEE
Access, vol. 6, pp. 6900–6919, 2017.

[48] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
Internet of Things: a primer,” Digital Communications and Networks,
vol. 4, no. 2, pp. 77–86, 2018.



18

[49] H. Djelouat, A. Amira, and F. Bensaali, “Compressive sensing-based
IoT applications: A review,” vol. 7, no. 4, 2018.

[50] K. AbualSaud, T. M. Elfouly, T. Khattab, E. Yaacoub, L. S. Ismail,
M. H. Ahmed, and M. Guizani, “A Survey on Mobile Crowd-Sensing
and Its Applications in the IoT Era,” IEEE Access, vol. 7, pp. 3855–
3881, 2019.

[51] P. M. Santos, J. G. Rodrigues, S. B. Cruz, T. Lourenço, P. M. D’Orey,
Y. Luis, C. Rocha, S. Sousa, S. Crisóstomo, C. Queirós, S. Sargento,
A. Aguiar, and J. Barros, “PortoLivingLab: An IoT-Based Sensing
Platform for Smart Cities,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 523–532, 2018.

[52] A. Noda, O. Fukuda, H. Okumura, and K. Arai, “Behavior analysis
of a small animal using IoT sensor system,” in ICIIBMS 2017 - 2nd
International Conference on Intelligent Informatics and Biomedical
Sciences, vol. 2018-Janua, 2018, pp. 9–10.

[53] A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. B.
Gupta, “Efficient IoT-based sensor BIG Data collection–processing and
analysis in smart buildings,” Future Generation Computer Systems,
vol. 82, pp. 349–357, 2018.

[54] J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-Free Occupant Activity
Sensing Using WiFi-Enabled IoT Devices for Smart Homes,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 3991–4002, 2018.

[55] M. Wazid, A. K. Das, R. Hussain, G. Succi, and J. J. Rodrigues, “Au-
thentication in cloud-driven IoT-based big data environment: Survey
and outlook,” Journal of Systems Architecture, vol. 97, no. September
2018, pp. 185–196, 2019.

[56] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result
of IoT Adoption in Manufacturing,” in Procedia CIRP, vol. 55. The
Author(s), 2016, pp. 290–295.

[57] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem,
A. Siddiqa, and I. Yaqoob, “Big IoT Data Analytics: Architecture,
Opportunities, and Open Research Challenges,” IEEE Access, vol. 5,
pp. 5247–5261, 2017.

[58] F. Alam, R. Mehmood, I. Katib, N. N. Albogami, and A. Albeshri,
“Data Fusion and IoT for Smart Ubiquitous Environments: A Survey,”
IEEE Access, vol. 5, pp. 9533–9554, 2017.

[59] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for IoT big data and streaming analytics: A survey,” vol. 20,
no. 4, pp. 2923–2960, 2018.

[60] A. Kanawaday and A. Sane, “Machine learning for predictive main-
tenance of industrial machines using IoT sensor data,” in Proceedings
of the IEEE International Conference on Software Engineering and
Service Sciences, ICSESS, vol. 2017-Novem, no. Figure 2, 2018, pp.
87–90.

[61] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on
application of machine learning for Internet of Things,” International
Journal of Machine Learning and Cybernetics, vol. 9, no. 8, pp. 1399–
1417, 2018.

[62] W. L. Chen, Y. B. Lin, F. L. Ng, C. Y. Liu, and Y. W. Lin,
“RiceTalk: Rice Blast Detection Using Internet of Things and Artificial
Intelligence Technologies,” IEEE Internet of Things Journal, vol. 7,
no. 2, pp. 1001–1010, feb 2020.

[63] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A Survey of Machine and Deep Learning Methods for
Internet of Things (IoT) Security,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 1646–1685, apr 2020.

[64] F. Tang, Z. M. Fadlullah, B. Mao, and N. Kato, “An Intelligent Traffic
Load Prediction-Based Adaptive Channel Assignment Algorithm in
SDN-IoT: A Deep Learning Approach,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 5141–5154, 2018.

[65] J. Tang, D. Sun, S. Liu, and J. L. Gaudiot, “Enabling Deep Learning
on IoT Devices,” Computer, vol. 50, no. 10, pp. 92–96, 2017.

[66] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[67] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J. S. Oh, “Semisuper-
vised Deep Reinforcement Learning in Support of IoT and Smart City
Services,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 624–635,
2018.

[68] S. K. Singh, S. Rathore, and J. H. Park, “BlockIoTIntelligence: A
Blockchain-enabled Intelligent IoT Architecture with Artificial Intelli-
gence,” Future Generation Computer Systems, vol. 110, pp. 721–743,
2020.

[69] C. A. Medina, M. R. Perez, and L. C. Trujillo, “IoT paradigm
into the smart city vision: a survey,” in Proceedings - 2017 IEEE
International Conference on Internet of Things, IEEE Green Computing
and Communications, IEEE Cyber, Physical and Social Computing,

IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, vol.
2018-Janua, 2018, pp. 695–704.

[70] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,
M. Shafie-Khah, and P. Siano, “Iot-based smart cities: A survey,” in
EEEIC 2016 - International Conference on Environment and Electrical
Engineering. IEEE, 2016, pp. 2–7.

[71] F. Al-Turjman and A. Malekloo, “Smart parking in IoT-enabled cities:
A survey,” Sustainable Cities and Society, vol. 49, no. December 2018,
2019.

[72] K. Pardini, J. J. Rodrigues, S. A. Kozlov, N. Kumar, and V. Furtado,
“IoT-based solid waste management solutions: A survey,” Journal of
Sensor and Actuator Networks, vol. 8, no. 1, 2019.

[73] P. Fraga-Lamas, T. M. Fernández-Caramés, and L. Castedo, “Towards
the internet of smart trains: A review on industrial IoT-connected
railways,” Sensors (Switzerland), vol. 17, no. 6, 2017.

[74] R. Ramakrishnan and L. Gaur, “Smart electricity distribution in
residential areas: Internet of Things (IoT) based advanced metering
infrastructure and cloud analytics,” in 2016 International Conference on
Internet of Things and Applications, IOTA 2016. Institute of Electrical
and Electronics Engineers Inc., sep 2016, pp. 46–51.

[75] A. Chowdhury, “Priority based and secured traffic management system
for emergency vehicle using IoT,” in Proceedings - 2016 International
Conference on Engineering and MIS, ICEMIS 2016. IEEE, 2016, pp.
1–6.

[76] Z. Lv, B. Hu, and H. Lv, “Infrastructure Monitoring and Operation for
Smart Cities Based on IoT System,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 3, pp. 1957–1962, 2020.

[77] G. Mei, N. Xu, J. Qin, B. Wang, and P. Qi, “A Survey of Internet of
Things (IoT) for Geohazard Prevention: Applications, Technologies,
and Challenges,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4371–4386, 2020.

[78] J. Shah and B. Mishra, “IoT enabled environmental monitoring system
for smart cities,” in 2016 International Conference on Internet of
Things and Applications, IOTA 2016. IEEE, 2016, pp. 383–388.

[79] S. L. Ullo and G. R. Sinha, “Advances in smart environment monitoring
systems using iot and sensors,” Sensors (Switzerland), vol. 20, no. 11,
2020.

[80] M. S. Jamil, M. A. Jamil, A. Mazhar, A. Ikram, A. Ahmed, and
U. Munawar, “Smart Environment Monitoring System by Employing
Wireless Sensor Networks on Vehicles for Pollution Free Smart Cities,”
in Procedia Engineering, vol. 107. Elsevier B.V., 2015, pp. 480–484.

[81] A. Alshamsi, Y. Anwar, M. Almulla, M. Aldohoori, N. Hamad, and
M. Awad, “Monitoring pollution: Applying IoT to create a smart
environment,” in 2017 International Conference on Electrical and
Computing Technologies and Applications, ICECTA 2017, vol. 2018-
Janua, 2017, pp. 1–4.

[82] M. Suresh, U. Muthukumar, and J. Chandapillai, “A novel smart
water-meter based on IoT and smartphone app for city distribution
management,” in TENSYMP 2017 - IEEE International Symposium on
Technologies for Smart Cities, 2017, pp. 1–5.

[83] S. Wadekar, V. Vakare, R. Prajapati, S. Yadav, and V. Yadav, “Smart
water management using IOT,” in 2016 5th International Conference
on Wireless Networks and Embedded Systems, WECON 2016. IEEE,
2017, pp. 3–6.

[84] P. P. Shah, A. A. Patil, and S. S. Ingleshwar, “IoT based smart water
tank with Android application,” in Proceedings of the International
Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC
2017, 2017, pp. 600–603.

[85] C. Kamienski, J. P. Soininen, M. Taumberger, R. Dantas, A. Toscano,
T. S. Cinotti, R. F. Maia, and A. T. Neto, “Smart water manage-
ment platform: IoT-based precision irrigation for agriculture,” Sensors
(Switzerland), vol. 19, no. 2, pp. 6–11, 2019.

[86] M. Saravanan, A. Das, and V. Iyer, “Smart water grid management
using LPWAN IoT technology,” in GIoTS 2017 - Global Internet of
Things Summit, Proceedings, 2017.

[87] R. Bikmetov, M. Y. A. Raja, and T. U. Sane, “Infrastructure and
applications of Internet of Things in smart grids: A survey,” in 2017
North American Power Symposium, NAPS 2017, 2017.

[88] M. Carratu, M. Ferro, A. Pietrosanto, and V. Paciello, “Smart Power
Meter for the IoT,” in Proceedings - IEEE 16th International Confer-
ence on Industrial Informatics, INDIN 2018, 2018, pp. 514–519.

[89] F. Al-Turjman and M. Abujubbeh, “IoT-enabled smart grid via SM: An
overview,” Future Generation Computer Systems, vol. 96, pp. 579–590,
2019.

[90] M. Aboelmaged, Y. Abdelghani, and M. A. E. Ghany, “Wireless IoT
based metering system for energy efficient smart cites,” in Proceedings



19

of the International Conference on Microelectronics, ICM, vol. 2017-
Decem, no. Icm. IEEE, 2018, pp. 1–4.

[91] M. Pennacchioni, M. G. Di Benedette, T. Pecorella, C. Carlini, and
P. Obino, “NB-IoT system deployment for smart metering: Evaluation
of coverage and capacity performances,” in 2017 AEIT International
Annual Conference: Infrastructures for Energy and ICT: Opportunities
for Fostering Innovation, AEIT 2017, vol. 2017-Janua, no. 1, 2017, pp.
1–6.

[92] J. Lloret, J. Tomas, A. Canovas, and L. Parra, “An Integrated IoT
Architecture for Smart Metering,” IEEE Communications Magazine,
vol. 54, no. 12, pp. 50–57, 2016.

[93] S. K. Datta, J. L. Dugelay, and C. Bonnet, “IoT Based UAV Platform
for Emergency Services,” in 9th International Conference on Informa-
tion and Communication Technology Convergence: ICT Convergence
Powered by Smart Intelligence, ICTC 2018. IEEE, 2018, pp. 144–147.

[94] Y. Krytska, I. Skarga-Bandurova, and A. Velykzhanin, “IoT-based
situation awareness support system for real-Time emergency manage-
ment,” in Proceedings of the 2017 IEEE 9th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications, IDAACS 2017, vol. 2, 2017, pp. 955–
960.

[95] N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-Based IoT Platform:
A Crowd Surveillance Use Case,” IEEE Communications Magazine,
vol. 55, no. 2, pp. 128–134, 2017.

[96] N. Al-Nabhan, N. Al-Aboody, and A. B. Alim Al Islam, “A hybrid
IoT-based approach for emergency evacuation,” Computer Networks,
vol. 155, pp. 87–97, 2019.

[97] D. B. Arbia, M. M. Alam, A. Kadri, E. B. Hamida, and R. Attia,
“Enhanced IoT-based end-to-end emergency and disaster relief system,”
Journal of Sensor and Actuator Networks, vol. 6, no. 3, pp. 1–18, 2017.

[98] A. F. Santamaria, P. Raimondo, M. Tropea, F. De Rango, and C. Aiello,
“An IoT surveillance system based on a decentralised architecture,”
Sensors (Switzerland), vol. 19, no. 6, 2019.

[99] N. Patil, S. Ambatkar, and S. Kakde, “IoT based smart surveillance
security system using raspberry Pi,” in Proceedings of the 2017 IEEE
International Conference on Communication and Signal Processing,
ICCSP 2017, vol. 2018-Janua, 2018, pp. 344–348.

[100] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito,
and R. Buyya, “Metropolitan intelligent surveillance systems for urban
areas by harnessing IoT and edge computing paradigms,” Software -
Practice and Experience, vol. 48, no. 8, pp. 1475–1492, 2018.

[101] A. P. Plageras, K. E. Psannis, Y. Ishibashi, and B. G. Kim, “IoT-based
surveillance system for ubiquitous healthcare,” in IECON Proceedings
(Industrial Electronics Conference), vol. 0. IEEE, 2016, pp. 6226–
6230.

[102] S. A. I. Quadri and P. Sathish, “IoT based home automation and surveil-
lance system,” in Proceedings of the 2017 International Conference on
Intelligent Computing and Control Systems, ICICCS 2017, vol. 2018-
Janua. Institute of Electrical and Electronics Engineers Inc., jul 2017,
pp. 861–866.

[103] L. Hu and Q. Ni, “IoT-Driven Automated Object Detection Algorithm
for Urban Surveillance Systems in Smart Cities,” IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 747–754, 2018.

[104] A. Khanna and R. Tomar, “IoT based interactive shopping ecosystem,”
in Proceedings on 2016 2nd International Conference on Next Genera-
tion Computing Technologies, NGCT 2016, no. October. IEEE, 2017,
pp. 40–45.

[105] H. Fu, G. Manogaran, K. Wu, M. Cao, S. Jiang, and A. Yang,
“Intelligent decision-making of online shopping behavior based on
internet of things,” International Journal of Information Management,
vol. 50, no. April 2019, pp. 515–525, 2020.

[106] J. Rezazadeh, K. Sandrasegaran, and X. Kong, “A location-based
smart shopping system with IoT technology,” in IEEE World Forum
on Internet of Things, WF-IoT 2018 - Proceedings, vol. 2018-Janua.
IEEE, 2018, pp. 748–753.

[107] R. Li, T. Song, N. Capurso, J. Yu, and X. Cheng, “IoT applications on
secure smart shopping,” in Proceedings - 2016 International Confer-
ence on Identification, Information and Knowledge in the Internet of
Things, IIKI 2016, vol. 2018-Janua, no. 6, 2018, pp. 238–243.

[108] N. N. Dlamini and K. Johnston, “The use, benefits and challenges of
using the Internet of Things (IoT) in retail businesses: A literature
review,” in Proceedings - 2016 3rd International Conference on Ad-
vances in Computing, Communication and Engineering, ICACCE 2016.
IEEE, 2017, pp. 430–436.

[109] M. S. Balaji and S. K. Roy, “Value co-creation with Internet of things
technology in the retail industry,” Journal of Marketing Management,
vol. 33, no. 1-2, pp. 7–31, 2017.

[110] L. Liu, B. Zhou, Z. Zou, S. C. Yeh, and L. Zheng, “A Smart Un-
staffed Retail Shop Based on Artificial Intelligence and IoT,” in IEEE
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks, CAMAD, vol. 2018-Septe. IEEE,
2018, pp. 2018–2021.

[111] F. Caro and R. Sadr, “The Internet of Things (IoT) in retail: Bridging
supply and demand,” Business Horizons, vol. 62, no. 1, pp. 47–54,
2019.

[112] Y. Zhang, Z. Guo, J. Lv, and Y. Liu, “A Framework for Smart
Production-Logistics Systems Based on CPS and Industrial IoT,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4019–4032,
sep 2018.

[113] E. Manavalan and K. Jayakrishna, “A review of Internet of Things (IoT)
embedded sustainable supply chain for industry 4.0 requirements,”
Computers and Industrial Engineering, vol. 127, no. November 2017,
pp. 925–953, 2019.

[114] Y. Zhang, L. Zhao, and C. Qian, “Modeling of an IoT-enabled supply
chain for perishable food with two-echelon supply hubs,” Industrial
Management and Data Systems, vol. 117, no. 9, pp. 1890–1905, 2017.

[115] A. R. Laxmi and A. Mishra, “RFID based Logistic Management
System using Internet of Things (IoT),” in Proceedings of the 2nd In-
ternational Conference on Electronics, Communication and Aerospace
Technology, ICECA 2018, no. Iceca. IEEE, 2018, pp. 556–559.

[116] C. N. Verdouw, R. M. Robbemond, T. Verwaart, J. Wolfert, and A. J.
Beulens, “A reference architecture for IoT-based logistic information
systems in agri-food supply chains,” Enterprise Information Systems,
vol. 12, no. 7, pp. 755–779, 2018.

[117] A. K. Ghosh, A. M. Ullah, and A. Kubo, “Hidden Markov model-
based digital twin construction for futuristic manufacturing systems,”
in Artificial Intelligence for Engineering Design, Analysis and Manu-
facturing: AIEDAM, vol. 33, no. 3, 2019, pp. 317–331.

[118] D. Kwon, M. R. Hodkiewicz, J. Fan, T. Shibutani, and M. G. Pecht,
“IoT-Based Prognostics and Systems Health Management for Industrial
Applications,” IEEE Access, vol. 4, pp. 3659–3670, 2016.

[119] J. Cheng, W. Chen, F. Tao, and C. L. Lin, “Industrial IoT in 5G environ-
ment towards smart manufacturing,” Journal of Industrial Information
Integration, vol. 10, no. March, pp. 10–19, 2018.

[120] Z. Meng, Z. Wu, C. Muvianto, and J. Gray, “A Data-Oriented M2M
Messaging Mechanism for Industrial IoT Applications,” IEEE Internet
of Things Journal, vol. 4, no. 1, pp. 236–246, 2017.

[121] G. Oguntala, R. Abd-Alhameed, S. Jones, J. Noras, M. Patwary, and
J. Rodriguez, “Indoor location identification technologies for real-
time IoT-based applications: An inclusive survey,” Computer Science
Review, vol. 30, pp. 55–79, 2018.

[122] S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and
J. Rodriguez, “Massive Internet of Things for Industrial Applications,”
Indutrial Electronics Magazine, no. march, pp. 28–33, 2017.

[123] D. Raposo, A. Rodrigues, S. Sinche, J. S. Silva, and F. Boavida,
“Industrial IoT monitoring: Technologies and architecture proposal,”
Sensors (Switzerland), vol. 18, no. 10, pp. 1–32, 2018.

[124] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[125] J. M. Talavera, L. E. Tobón, J. A. Gómez, M. A. Culman, J. M. Aranda,
D. T. Parra, L. A. Quiroz, A. Hoyos, and L. E. Garreta, “Review of IoT
applications in agro-industrial and environmental fields,” pp. 283–297,
2017.

[126] M. S. Mekala and P. Viswanathan, “A Survey: Smart agriculture
IoT with cloud computing,” in 2017 International Conference on
Microelectronic Devices, Circuits and Systems, ICMDCS 2017, vol.
2017-Janua, 2017, pp. 1–7.

[127] N. Ahmed, D. De, and I. Hussain, “Internet of Things (IoT) for Smart
Precision Agriculture and Farming in Rural Areas,” IEEE Internet of
Things Journal, vol. 5, no. 6, pp. 4890–4899, 2018.

[128] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldu, and M. I. Ali, “Agri-IoT:
A semantic framework for Internet of Things-enabled smart farming
applications,” in 2016 IEEE 3rd World Forum on Internet of Things,
WF-IoT 2016, 2017, pp. 442–447.

[129] D. Liu, X. Cao, C. Huang, and L. Ji, “Intelligent agriculture greenhouse
environment monitoring system based on IOT technology,” in Proceed-
ings - 2015 International Conference on Intelligent Transportation, Big
Data and Smart City, ICITBS 2015, 2016, pp. 487–490.

[130] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey
on the Role of IoT in Agriculture for the Implementation of Smart
Farming,” IEEE Access, vol. 7, pp. 156 237–156 271, 2019.



20

[131] R. Dagar, S. Som, and S. K. Khatri, “Smart Farming - IoT in Agri-
culture,” in Proceedings of the International Conference on Inventive
Research in Computing Applications, ICIRCA 2018, no. Icirca. IEEE,
2018, pp. 1052–1056.

[132] M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and
A. F. Skarmeta, “Smart farming IoT platform based on edge and cloud
computing,” Biosystems Engineering, vol. 177, pp. 4–17, 2019.

[133] A. A. Zaidan, B. B. Zaidan, M. Y. Qahtan, O. S. Albahri, A. S. Albahri,
M. Alaa, F. M. Jumaah, M. Talal, K. L. Tan, W. L. Shir, and C. K. Lim,
“A survey on communication components for IoT-based technologies
in smart homes,” Telecommunication Systems, vol. 69, no. 1, pp. 1–25,
2018.

[134] M. Al-Kuwari, A. Ramadan, Y. Ismael, L. Al-Sughair, A. Gastli, and
M. Benammar, “Smart-home automation using IoT-based sensing and
monitoring platform,” in Proceedings - 2018 IEEE 12th International
Conference on Compatibility, Power Electronics and Power Engineer-
ing, CPE-POWERENG 2018. IEEE, 2018, pp. 1–6.

[135] M. M. Dhanvijay and S. C. Patil, “Internet of Things: A survey of
enabling technologies in healthcare and its applications,” pp. 113–131,
2019.

[136] M. M. Alam, H. Malik, M. I. Khan, T. Pardy, A. Kuusik, and Y. Le
Moullec, “A survey on the roles of communication technologies in
IoT-Based personalized healthcare applications,” IEEE Access, vol. 6,
pp. 36 611–36 631, 2018.

[137] J. Qi, P. Yang, G. Min, O. Amft, F. Dong, and L. Xu, “Advanced
internet of things for personalised healthcare systems: A survey,” pp.
132–149, 2017.

[138] S. Y. Y. Tun, S. Madanian, and F. Mirza, “Internet of things (IoT)
applications for elderly care: a reflective review,” Aging Clinical and
Experimental Research, no. 0123456789, 2020.

[139] P. Gomes, N. Magaia, and N. Neves, “Industrial and artificial internet of
things with augmented reality,” in Convergence of Artificial Intelligence
and the Internet of Things. Handbook Springer-Verlag, 2020, pp. 323–
346.

[140] R. T. Azuma, “A survey of augmented reality,” Presence: Teleoperators
and Virtual Environments, vol. 6, no. 4, pp. 355–385, 1997.

[141] G. Bryksin, “VR, AR, MR: Which Reality Technology
to Choose for Your Business,” 2018. [Online]. Available:
https://rubygarage.org/blog/difference-between-ar-vr-mr

[142] D. Amin and S. Govilkar, “Comparative Study of Augmented Reality
Sdk’s,” International Journal on Computational Science & Applica-
tions, vol. 5, no. 1, pp. 11–26, 2015.

[143] R. Amadeo, “Google’s ARCore brings augmented reality
to millions of Android devices | Ars Technica,” 2017.
[Online]. Available: https://arstechnica.com/gadgets/2017/08/googles-
arcore-brings-augmented-reality-to-millions-of-android-devices/

[144] Apple Inc., “Augmented Reality - ARKit 3 - Apple Developer,”
2019. [Online]. Available: https://developer.apple.com/augmented-
reality/arkit/

[145] F. Herpich, R. L. M. Guarese, and L. M. R. Tarouco, “A Comparative
Analysis of Augmented Reality Frameworks Aimed at the Development
of Educational Applications,” Creative Education, vol. 08, no. 09, pp.
1433–1451, jul 2017.

[146] T. Domhan, “Augmented Reality on Android Smartphones,” vol. 7,
no. 10, p. 47, 2010.

[147] L. Visionstar Information Technology (Shanghai) Co., “Getting
Started with EasyAR SDK,” 2018. [Online]. Available:
https://www.easyar.com/doc/EasyAR SDK/Getting Started/Getting-
Started-with-EasyAR.html#what-is-easyar-sdk

[148] B. C. Zapata, Android Studio Application Development. Packt
Publishing, 2013.

[149] Apple Developer, “Xcode,” 2019. [Online]. Available:
https://developer.apple.com/xcode/

[150] T. Anglin, “Approaching Mobile: Understandng the
ThreeWays to Build Mobile Apps,” Tech. Rep.
[Online]. Available: https://www.telerik.com/docs/default-
source/whitepapers/choose-right-approach-mobile-app-
developmentbb581d10116543e79a9febdb187fd0a3.pdf?sfvrsn=0

[151] D. Titov, “Native vs. Cross-Platform: Which Reigns in
AR App Development World?” 2019. [Online]. Available:
https://invisible.toys/native-vs-cross-platform/

[152] C. Rahul Raj and Seshu Babu Tolety, “A study on approaches to build
cross-platform mobile applications and criteria to select appropriate
approach,” in 2012 Annual IEEE India Conference (INDICON). IEEE,
dec 2012, pp. 625–629.

[153] Adobe, “PhoneGap Documentation,” 2013. [Online]. Available:
http://docs.phonegap.com/

[154] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-platform
mobile development tools,” in 2012 16th International Conference on
Intelligence in Next Generation Networks. IEEE, oct 2012, pp. 179–
186.

[155] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai, “Cross platform
approach for mobile application development: A survey,” in 2016
International Conference on Information Technology for Organizations
Development, IT4OD 2016. IEEE, mar 2016, pp. 1–5.

[156] JetBrains, “IntelliJ IDEA: The Java IDE for Professional Developers by
JetBrains,” 2000. [Online]. Available: https://blog.jetbrains.com/idea/
https://www.jetbrains.com/idea/

[157] Viro Media Inc., “ViroReact,” 2019. [Online]. Available:
https://viromedia.com/viroreact

[158] Microsoft, “Overview of Visual Studio.” [Online].
Available: https://docs.microsoft.com/en-us/visualstudio/get-
started/visual-studio-ide?view=vs-2019#popular-productivity-
features%0Ahttps://docs.microsoft.com/en-us/visualstudio/get-
started/visual-studio-ide?view=vs-2019

[159] Visual Studio Code, “Documentation for Visual Studio Code,” 2015.
[Online]. Available: https://code.visualstudio.com/docs

[160] Ionic, “Core Concepts - Ionic Documentation,” 2019. [Online]. Avail-
able: https://ionicframework.com/docs/core-concepts/fundamentals

[161] G. Douglas, “Difference between MVVM and
MVP | Difference Between,” 2017. [Online].
Available: http://www.differencebetween.net/technology/difference-
between-mvvm-and-mvp/

[162] T. Reenskaug, “The Model-View-Controller (MVC) Its Past
and Present,” Tech. Rep., 2003. [Online]. Available:
http://heim.ifi.uio.no/ trygver/2003/javazone-jaoo/MVC_pattern.pdf

[163] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80,” Journal of Object-
Oriented Programming, vol. 1, no. 3, pp. 26–49, 1988. [Online].
Available: https://dl.acm.org/citation.cfm?id=50757.50759

[164] T. Lou, “A comparison of Android Native App
Architecture MVC, MVP and MVVM,” Ph.D. dis-
sertation, Aalto University, 2016. [Online]. Available:
https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf

[165] Windows Dev Center, “Data binding in depth - Win-
dows UWP applications | Microsoft Docs,” 2018. [On-
line]. Available: https://docs.microsoft.com/en-us/windows/uwp/data-
binding/data-binding-in-depth

[166] J. H. Christensen and J. H., “Using RESTful web-services and cloud
computing to create next generation mobile applications,” in Pro-
ceeding of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications - OOPSLA
’09. New York, New York, USA: ACM Press, 2009, p. 627.

[167] G. Mein, S. Pal, G. Dhondu, T. K. Anand, A. Sto-
janovic, M. Al-Ghosein, and P. M. Oeuvray, “Simple
object access protocol,” nov 1997. [Online]. Available:
https://patents.google.com/patent/US6457066B1/en

[168] K. S. Wagh, K. Wagh, and R. Thool, “A Comparative study of
SOAP vs REST web services provisioning techniques for mobile host
Person Re-Identification View project MANET topology View project
A Comparative Study of SOAP Vs REST Web Services Provisioning
Techniques for Mobile Host,” Journal of Information Engineering and
Applications, vol. 2, no. 5, 2012.

[169] S. Rautmare and D. M. Bhalerao, “MySQL and NoSQL database com-
parison for IoT application,” in 2016 IEEE International Conference
on Advances in Computer Applications (ICACA). IEEE, oct 2016, pp.
235–238.

[170] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?”
Computer, vol. 43, no. 2, pp. 12–14, feb 2010.

[171] R. Cattell and Rick, “Scalable SQL and NoSQL data stores,” ACM
SIGMOD Record, vol. 39, no. 4, p. 12, may 2011.

[172] A. Nayak, A. Poriya, and D. Poojary, “Type of NOSQL Databases and
its Comparison with Relational Databases,” International Journal of
Applied Information Systems (IJAIS), vol. 5, no. 4, 2013.

[173] A. M. de Souza, E. P. V. Prado, V. Sun, and M. Fantinato, “Critérios
para Seleção de SGBD NoSQL: o Ponto de Vista de Especialistas
com base na Literatura,” Anais do Simpósio Brasileiro de Sistemas de
Informação (SBSI), pp. 149–160, may 2014.

[174] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor Data
Storage Performance: SQL or NoSQL, Physical or Virtual,” in 2012
IEEE Fifth International Conference on Cloud Computing. IEEE, jun
2012, pp. 431–438.

[175] A. Choudury, “Software Development Life Cycle: agile vs waterfall,”
Singapore, 2013.



21

[176] J. Highsmith and A. Cockburn, “Agile software development: the
business of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

[177] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for Agile Software Development Twelve
Principles of Agile Software,” Tech. Rep., 2001. [Online]. Available:
http://www.agilemanifesto.org

[178] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and Software Technology,
vol. 50, no. 9-10, pp. 833–859, aug 2008.

[179] R. Kumar, P. Maheshwary, and T. Malche, “Inside Agile Family Soft-
ware Development Methodologies,” International Journal of Computer
Sciences and Engineering, vol. 7, no. 6, pp. 650–660, 2019.

[180] A. Taivalsaari and T. Mikkonen, “On the development of IoT systems,”
in 2018 3rd International Conference on Fog and Mobile Edge Com-
puting, FMEC 2018. Institute of Electrical and Electronics Engineers
Inc., may 2018, pp. 13–19.

[181] P. Gomes, N. Magaia, and N. Neves, “Industrial and artificial
internet of things with augmented reality,” in Internet of
Things. Springer, 2020, pp. 323–346. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-44907-0_13

[182] N. Berdy, R. Shahan, and D. Betts, “Introduction to Azure
IoT Hub | Microsoft Docs,” 2018. [Online]. Available:
https://docs.microsoft.com/en-gb/azure/iot-hub/about-iot-hub

[183] N. Ramachandran and V. Perumal, “Delay-aware heterogeneous
cluster-based data acquisition in Internet of Things,” Computers and
Electrical Engineering, vol. 65, pp. 44–58, jan 2018.

[184] L. Zhao, W. Sun, Y. Shi, and J. Liu, “Optimal Placement of Cloudlets
for Access Delay Minimization in SDN-Based Internet of Things
Networks,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1334–
1344, apr 2018.

[185] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey
of communication protocols for internet of things and related
challenges of fog and cloud computing integration,” ACM Computing
Surveys, vol. 51, no. 6, pp. 1–29, jan 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3292674

[186] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice
, Second Edition, 3rd ed. Addison-Wesley, 2003.

[187] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software
development teams manage technical debt? – An empirical study,”
Journal of Systems and Software, vol. 120, pp. 195–218, 2016.

[188] N. Rios, M. G. de Mendonça Neto, and R. O. Spínola, “A tertiary
study on technical debt: Types, management strategies, research trends,
and base information for practitioners,” Information and Software
Technology, vol. 102, no. May, pp. 117–145, 2018.

[189] S. Ickin, K. Petersen, and J. Gonzalez-Huerta, “Why do users install
and delete apps? A survey study,” in Lecture Notes in Business
Information Processing, vol. 304, 2017, pp. 186–191.

[190] P. M. Jacob and P. Mani, “Software architecture pattern selection model
for internet of things based systems,” IET Software, vol. 12, no. 5, pp.
390–396, oct 2018.

[191] Y. B. Zikria, H. Yu, M. K. Afzal, M. H. Rehmani, and O. Hahm,
“Internet of Things (IoT): Operating System, Applications and Proto-
cols Design, and Validation Techniques,” Future Generation Computer
Systems, vol. 88, pp. 699–706, nov 2018.

[192] T. Luo, J. Huang, S. S. Kanhere, J. Zhang, and S. K. Das, “Improving
IoT data quality in mobile crowd sensing: A cross validation approach,”
IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5651–5664, jun
2019.

[193] European Commission, “Data protection.” [Online]. Available:
https://ec.europa.eu/info/law/law-topic/data-protection_en

[194] E. Adi, A. Anwar, Z. Baig, and S. Zeadally, “Machine learning and data
analytics for the IoT,” Neural Computing and Applications, vol. 32,
no. 20, pp. 16 205–16 233, oct 2020.

[195] E. P. Júnior, I. L. D. Delmiro, N. Magaia, F. M. Maia, M. M.
Hassan, V. H. C. Albuquerque, and G. Fortino, “Intelligent Sensory
Pen for Aiding in the Diagnosis of Parkinson’s Disease from Dynamic
Handwriting Analysis,” Sensors, vol. 20, no. 20, p. 5840, oct 2020.

[196] O. Irshad, M. U. G. Khan, R. Iqbal, S. Basheer, and A. K. Bashir,
“Performance optimization of IoT based biological systems using deep
learning,” Computer Communications, vol. 155, pp. 24–31, apr 2020.

[197] N. N. Srinidhi, S. M. Dilip Kumar, and K. R. Venugopal, “Network
optimizations in the Internet of Things: A review,” Engineering Science
and Technology, an International Journal, vol. 22, no. 1, pp. 1–21, feb
2019.

[198] F. Ghorbani, M. Kia, M. Delrobaei, and Q. Rahman, “Evaluating the
Possibility of Integrating Augmented Reality and Internet of Things
Technologies to Help Patients with Alzheimer’s Disease,” in 2019
26th National and 4th International Iranian Conference on Biomedical
Engineering, ICBME 2019. Institute of Electrical and Electronics
Engineers Inc., nov 2019, pp. 139–144.

[199] S. Paul, S. Hamad, and S. Khalid, “The Role of AR/VR in an
IoT connected digital enterprise for smart education,” in ITT 2019
- Information Technology Trends: Emerging Technologies Blockchain
and IoT. Institute of Electrical and Electronics Engineers Inc., nov
2019, pp. 305–308.


