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Abstract 

With the continuous advancement of smart devices and their 

demand for data, the complex computation that was previously 

exclusive to the cloud server is now moving towards the edge of 

the network. Due to numerous reasons (e.g., applications 

demanding low latencies and data privacy), data-based 
computation has been brought closer to the originating source, 

forging the Edge Computing paradigm. Together with Machine 

Learning, Edge Computing has turned into a powerful local 

decision-making tool, thus fostering the advent of Edge Learning. 

The latter, however, has become delay-sensitive as well as 

resource-thirsty in terms of hardware and networking. New 

methods have been developed to solve or, at least, minimize these 

issues, as proposed in this research. In this study, we first 

investigate representative communication methods for edge 

learning and inference (ELI), focusing on data compression, 

latency, and resource management. Next, we propose an ELI-

based video data prioritization framework which only considers 
the data having events and hence significantly reduces the 

transmission and storage resources when implemented in 

surveillance networks. Furthermore, in this overview, we critically 

examine various communication aspects related to Edge Learning 

by analyzing their issues and highlighting their advantages and 

disadvantages. Finally, we discuss challenges and present issues 

that are yet to be overcome. 
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1. Introduction 

The rapid growth of global data traffic is directly related to 

the accelerated popularization of edge devices. These typically 

low-powered embedded devices, which are often used for data 

collection, have led to unprecedented opportunities and innovative 

forms to improve our quality of life, serving as a stimulating 

substrate towards new scientific discoveries [1]. Indeed, 

combining Internet of Things (IoT) devices and data with the 

recent breakthroughs in machine learning (ML) has suggested 

academia and industry to pursue solutions in scenarios related to 

the smart city, intelligent transportation, e-Health, e-Banking, 

among others.  Particularly, ML thrives in the domains of these 

applications [2]. Commonly, training procedures underneath ML 

models are computationally intensive, and thus only powerful 

cloud servers can support them effectively [3]. 

The limitation of ML to the cloud has propelled a recent 

research trend aimed at developing models to be trained at the edge 
devices of the network. However, the concept of distributed ML is 

designed by assuming a certain performance efficiency in relation 

to the computing and networking hardware. This is unlikely in 

practice due to the heterogeneous hardware and software of edge 

devices, which, along with the diversity of the data collected from 

different users contribute to significant differences between 

locally learned ML models. Consequently, the training of a model 

with satisfactory predictive performance and admissible 

computational efforts poses a challenging task that demands more 

intelligent solutions [4]. 

In this context, a recent trend has emerged from the evolution 

of mobile networks and the excellent capabilities of ML, called 
edge learning and inference (ELI). This concept is based on the 

idea that, instead of uploading all the data collected by the edge 

devices to a data center, the storage and computation resources of 

the edge network should be harnessed to provide a low-latency, 

reliable and intelligent learning service [5]. Furthermore, 

Federated Learning (FL) has gained momentum in the last years 

for privacy-preserving distributed ML, which is realized by 

collaboratively training a model across devices without sharing 

their data. This concept combined with the idea of ELI is called 

Federated Edge Learning and Inference (FELI). The main feature 

of FELI is to aggregate local models trained on devices to update 
the global model at a server. 

Referring to communication aspects, an intelligent edge 

should provide adaptive and dynamic management and 

maintenance of communication resources at the edge. The 

progressive development of communication technologies has 

enabled increasingly diverse network access methods. At the same 

time, a more persistent and reliable connection between edge 

devices and the cloud server is provided by the edge computing 

infrastructure as an intermediate medium [6]. Thus, a continuum 

of shared resources is formed by the gradually merged end devices, 

edge, and the cloud. However, the complex and sizeable overall 

architecture of computing, wireless communication, storage, 
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networking, and other resources can be a challenge to maintain 

and manage [2]. 

This overview brings together the above concepts by 

elaborating extensively on the problems derived from the 

deployment of ELI functionalities. Specifically, we focus on the 
video data generated by edge devices, which call for the 

deployment of effective Artificial Intelligence models that endow 

such edge devices with human-like intelligence to respond to real-

time events. This survey highlights the potential of ELI and 

overviews state-of-the-art strategies for communication 

technologies, emphasizing their achievements and limitations. To 

shed empirical evidence on our analysis, a second contribution of 

this work is a novel deep learning-based framework that prioritizes 

video data containing human actions over the edge and then 

transmits it upstream for detailed analysis. Considering the 

restricted storage and processing capabilities of edge devices, we 

resort to a lightweight deep learning model to recognize coarse 
actions in vision sensor data. The present survey concludes by 

reviewing issues in this research domain and by outlining future 

research directions. 

 

2. Edge Learning and Inference 

A. Concept 

The ELI concept comes from the aggregation of two main 

concepts: Edge Computing (EC) and ML. EC aims to bring data 

processing as close to the source as possible, reducing end-to-end 

latency and bandwidth usage. In other words, ELI runs learning 

and/or inference algorithms locally (i.e., at an IoT device, a user’s 
computer, or an edge server), thereby demanding less network and 

cloud resources. Bringing computation close to the network edge 

minimizes the number of long-distance communications and 

reduces potential sources of risk regarding data privacy. On the 

other hand, ML tries to “learn” by using data, statistics, and trial-

and-error to optimize a process to endow the machine with a robust 

decision-making ability. For instance, ML gives computers the 

capabilities to solve that even humans struggle to accomplish, such 

as climate change and cancer research [7]. The combination of 

these two definitions is what makes ELI so promising. It 

capitalizes on the agility, flexibility, and privacy capabilities of EC 

while harnessing the cognition in decision-making of ML. In other 
terms, the basic concept behind ELI is the idea of distributing 

learning and inference across an entire network instead of 

centralizing it in the cloud, as shown in Figure 1. 

 

 
Figure 1: Representation of the ELI and FELI concepts, where the 

distribution of tasks is located across the entire network. Modules: 

(1) Download model parameters; (2) Update model with local 

data; (3) Upload new parameters; (4) Update global model. 

 
B. Applications 

ML applications at the edge flourish in almost all areas of 

computing. ELI is usually associated with security and 

surveillance, but it goes far beyond these application domains. 

Augmented Reality, Virtual Reality, or automatic pilot require 

real-time video analysis. The execution of these tasks in a cloud 
environment incurs some complications, such as inadmissible 

latency levels, exhausted bandwidth, and low reliability. All these 

complications can usually be resolved when video processing is 

implemented closer to the data origin at either an end device or an 

edge node [1]. Complementarily to the applications mentioned 

above, the Internet of Vehicles can also benefit significantly from 

ELI to reduce accidents, decrease traffic congestion, improve 

safety, and enhance efficiency in transportation systems. On one 

hand, EC can provide high-speed, low-latency communications 

for a fast response in inference time, and more plausible 

realization of autonomous driving. On the other hand, deep 
learning techniques have become central for vehicular perception 

and, hence, act as an enabler for safe autonomous driving [8]. 

IoT has a key role to bring intelligence to homes and offices, 

ranging from smart lighting control systems to smart access 

control. Nevertheless, it is necessary to make use of wireless IoT 

controllers and sensors in walls, floors, and corners. In order to 

protect sensitive data, IoT also relies on ELI extensively [9]. The 

same is true in the context of cities. Areas such as public facilities, 

transportation, and public safety can significantly benefit from 

ELI [10]. Cost and efficiency are the two primary considerations 

here, for the size and magnitude of a big metropolis, especially 

considering the natural and geographical characteristics of current 
urban environments.  The only viable solution in the mid-to-long 

run is to adopt the ELI paradigm. Transitioning from personal to 

industrial IoT, two principles become critical. The first is 

automation, which is the main target of ML technology. The 

second is data analysis, whose output is essential for informed 

decision-making. Some requirements are vital in these 

environments, such as response latency, privacy protection, and 

risk control. As we will review next, the ELI-related contributions 

reported to date have addressed these points significantly. 

 

3. Communication Methods for ELI 

A. Data Compression 

For a fast ML model training (learning), it is necessary to 

enable rapid access to the enormous real-time data captured by 

edge devices. However, there is a bottleneck in the communication 

over networks due to the extensive overhead. One approach to 

reduce the overhead is to compress data through stochastic 

gradients. To further alleviate the compression bandwidth demand, 

most existing schemes focus on scalar gradient quantization to 

efficiently deal with its high dimensionality. With this challenge 

in mind, Y. Du et al. [3] presented a low-complexity 

Grassmannian quantization scheme that, besides communication-

efficient, guarantees convergence. This method aims to minimize 
the deviation in direction between a line and its quantized version, 

or the deviation in orientation for the case of a subspace, becoming 
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particularly useful when compressing data that contain 

information on a subspace orientation or vector direction. 

Specific data compression approaches have also been 

reported in the FL realm, especially around the Federated Average 

(FedAvg) algorithm, aimed to reduce the data communication 
requirements of learning edge nodes and support data privacy. 

FedAvg is designed for user devices, such as smartphones, which 

also suffer from the same data compression problems. To reduce 

and help ease network usage, J. Mills et al. developed a 

communication-Efficient FedAvg approach to reduce the number 

of rounds towards FedAvg convergence and the total/compressed 

data uploaded per round [1]. A summarized form of literature is 

given in Table I, representing data compression, latency, resource 

management, and adaptive transmission approaches. 

 

B. Latency 

Other properties can be targeted to achieve efficient 
communication in both learning and inference, such as the 

reduction of latency. In [4], a broadband analog aggregation 

technique was used for FELI in a wireless network. The scheme’s 

idea is to exploit the simultaneous transmission of a broadband 

multi-access channel waveform superposition property. The 

reduction of the latency when compared to other orthogonal access 

is significant, but there is still room for improvement, such as to 

enhance the aggregation. D. Zhang et al. developed a solution to 

batch tasks, called EdgeBatch, to identify the optimal batch size 

for Deep Neural Network (DNN) of GPU-intensive tasks, leading 

to a significant optimization between the delay of tasks in end-to-
end devices [10]. M. Elbamby et al. analyzed techniques of ultra-

reliable low-latency communication enablers that consist of a 

more direct attack on the leading cause of the latency, that is, the 

distance to the server [8]. 

 

C. Resource Management 

There is also a tradeoff between communication and 

computation at the edge inference system in the downlink, 

especially when the nodes perform model learning tasks. A higher 

quality-of-service can be attained by performing inference at the 
edge for delivering the output results to mobile users through a 

cooperative downlink transmission. Building upon this tradeoff, K. 

Yang et al. proposed to jointly decide on the task allocation 

strategy at edge nodes and designed downlink beamforming 

vectors by minimizing the sum of transmission and computation 

power consumption [11]. Y. Liu et al. introduced an IoT-based 

energy management system that deploys edge computing with 

Deep Reinforcement Learning [9]. This system can improve 

energy management performance as well as reduce the execution 

time. S. Yu et al. proposed a framework capable of taking precise 

offloading decisions in the MEC network. In the framework, both 

the variance of the network conditions and the execution cost of 
the task on the MEC side are analyzed [12]. 

 

D. Adaptive Transmission 

The edge of the network in smart IoT devices and surveillance 

cameras has the task of capturing and compressing video 

information, processing frames in real-time, and depending on the 

application itself, performing image segmentation, annotation 

and/or captioning, among other learning-based functionalities 

alike. To reduce the potential overhead caused by the data size, 

one can adaptively acquire data and/or selectively send it to the 

cloud. In this context, Wang et al. introduced various Edge DL 
methods to adapt to various Deep Neural Networks’ architectures, 

hardware platforms, wireless connections, and server load levels, 

to identify the partition point for best latency and best mobile 

energy consumption [2]. 

 
Table I: Data compression, latency, resource management, and adaptive transmission approaches with their key properties. 

Issue Citation Solution Advantages Disadvantages 

Data 
compression 

[3] 
Quantization of low complexity 

of Grassmannian 

Light-computation requirement and 

highly scalable 

Network requirements 

seem to be limiting 

[1] Federated Average (FedAvg) 
Greatly reduces the number of rounds 

of convergence, reducing data sent 
Does not reflect the real 

environment 

Latency 

[4] 
Broadband Analog Aggregation 

(BAA) 

The reduction of the latency compared 
to other orthogonal access is 

significant 

Although the latency is 
reduced, the complexity is 

increased 

[10] EdgeBatch 
Significant optimization between the 
delay of tasks in end-to-end devices 

Do not reflect the real 
environment 

[8] 
Ultra-Reliable, Low-Latency 

Communications 
A great number of enablers in ELI 

Lack of any test with the 
enablers mentioned 

Resource 
management 

[11] 
Design Downlink Beamforming 

Vectors 

Minimizes the sum of transmission 
power consumption and computation 

power consumption 

Restrictive assumptions in 
the proposed technique 

[9] Deep Reinforcement Learning Significantly reduces scheduling time. 
It is computational 

demanding 

[12] 
Framework Capable Offloading 

Decisions 
Greatly optimizes the communication 

resource and energy saving 

It is not clear if it would 
run in other types of 

environments 

Adaptive 
transmission 

[2] 
Adaptive framework for reducing 
the delay and power consumption 

Highly adaptive method that analyzes 

the various device conditions in one 
DNN method 

Can be outperformed by a 
specialized method 
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4. Proposed ELI-based Video Data Prioritization 

Framework  

In this section, we build upon the previously reviewed state-

of-the-art strategies by focusing on video surveillance in IoT 

environments with learning functionalities deployed in EC nodes. 
Indeed, the distributed vision sensors in IoT networks are 

functional 24/7, continuously creating big volumes of data, that 

are used in many surveillance applications, ranging from indoor 

office monitoring to outdoor public places and roads. Following 

the issues of ELI scenarios discussed previously, automated 

analysis and purposeful utilization of vision sensors’ data are 

hindered by: (1) the high latency rate of wireless sensor networks 

(WSNs) that create transmission delays and reduce the swiftness 

of responsive actions in IoT environments; and (2) the large-sized 

complex image data that require powerful graphics processing 

units (GPUs) and cloud handling services. Instant analysis of 

video data results in efficient responsive engagements, thereby 
preventing or delaying anomalous events. In our proposed edge 

intelligence-based video data prioritization framework, these 

challenges are tackled intelligently by considering resource-

constrained devices that are functional over the edge nodes, 

thereby showcasing the enormous potential of ELI for this 

application niche. 

The proposed framework has several functional modules, 

such as input acquisition from resource-constrained device over 

the edge, equipped with vision sensor, followed by its propagation 

to the lightweight trained model and optimally to the prioritization 

decision-making module. Once the data is selected for 
prioritization, they are forwarded to the data analysis cloud servers 

over WSNs in a compressed format and then used for detailed 

events analysis, including video classification, anomaly analysis, 

video retrieval, etc. The resource-constrained device deployed in 

IoT environment is also functional 24/7, generating video frames. 

However, our framework ensures transmission of data containing 

events, which is possible due to our fine-tuned deep learning 

model for events classification. The deep learning model is trained 

over images from video summarization and anomaly recognition 

datasets comprising a diverse set of events, including walking, 

running, or jogging, among other actions alike. The baseline 

concept of our framework is to utilize the limited computational 
capabilities effectively; therefore, we skip the details of events, 

such as their types (walking, running), and integrate them together 

in a single class, named “event,” against the videos without any 

event, termed “no-event.” Furthermore, as the video data are 3-

dimensional, 3-D learning models are required for effectively 

accounting for correlations in time and image domains. The 

enormous parametric space of 3D learning models requires 

training and implementation over GPUs and our motive is to 

execute lightweight models over resource-constrained devices. To 

tackle this issue, the proposed framework incorporates the “time 

intervals” concept over video frames to enhance the decision-
making of “event” and “no-event” classes for a series of 

continuous frames belonging to the same event. A recent state-of-

the-art lightweight deep learning model, “EfficientNetB3” [13], 

was utilized for our problem. The learning abilities of 

“EfficientNetB3” over “ImageNet” dataset are transformed into 

the binary classification task of “events/no-events” probabilities 

computation in continuous video frames. 

The working mechanism of the proposed data prioritization 

framework is four-fold: i) acquire a single frame, ii) propagate it 

to the trained model to generate output probabilities, iii) analyze 
the probabilities in intervals then decide whether frames of an 

interval should be prioritized, and iv) send over WSN to the data 

analysis centers. The proposed framework employs a vision sensor 

attached to the resource-constrained device that continuously 

generates video frames. The key module of our framework is 

related to the fine-tuned deep learning models prediction, where 

we pass each frame in real-time from the vision sensor to acquire 

an output probabilities array, indicating the chances of each class’s 

occurrence. In case the probability for the “event” class is higher 

than a certain threshold, the frame is stored temporarily alongside 

its probability value. The same process continues until the 

structural similarity index measurement (SSIM) distance between 
two successive frames is lower than a certain threshold, indicating 

a different “event”. The SSIM measurement helps distinguish one 

event from another; therefore, the proposed framework transmits 

the “prioritized” frames of a single event over the WSN.  

 

Saving Network Resources:  

To ensure an extensively efficient and flexible transmission 

over the WSN, our framework implements an encoding 

mechanism over the frames of a single event interval before its 

transmission. The encoding mechanism involves compression of 

portable network graphics of each frame in the prioritized interval, 
which decreases the data size (approximately 17.02% smaller size 

per frame), increasing the speed and safety of transmission as the 

frames over the WSN are propagated in an intermediate structure 

i.e., encoded format. To achieve extensively reduced transmission, 

it is also possible to transmit only a single encoded frame from 

each interval, as given in the experiments (see Table II). Most of 

the time, an event occurs in sequence of frames, and thus the frame 

with highest probability of ongoing event is representative of the 

whole event (current interval), which means dependency on this 

specific frame is also a reliable decision. Therefore, based on our 

experimental results, we suggest applying the concept of single 

frames selection from an interval, while transmitting prioritized 
contents over communication channels with huge traffic or limited 

potential. The overall working pipeline is given in Figure 2.  

To verify the effective prioritization potentials of our 

framework, we examined its performance over a multi-view 

surveillance videos summarization dataset “Office dataset”. The 

generated prioritized contents and other statistics are given in 

Table II. We applied our algorithm over the whole dataset, which 

contains four different videos, and reported the prioritized data 

results against the actual contents’ transmission. As shown in 

Table II, the Office-0 video has a total number of 26955 frames, 

each of 20 KB size (average), resulting in 539.1 MB for the overall 
frames. If transmitted over the WSN, this video demands a huge 

bandwidth and yields unaffordable transmission latencies. On the 

other hand, if we apply the proposed algorithm, the prioritized 

content containing events shrinks the number of frames to 776 and 

15.52 MB, thereby relaxing the usage of transmission resources.
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Figure 2: The proposed edge-intelligence based data prioritization framework for surveillance in IoT environments. 

 
After applying the intervals concept, i.e., selecting only a single 

frame with the highest probability from a single event, the number 

of frames for the Office-0 video becomes only 52 with 1.04 MB 

size of transmission. Note that in our experiment, we considered a 

sequence of 15 frames per event, so as not to lose any important 

information related to the frames with events. The significantly 

lowest transmission size is observable for the frames when sent 

after encoding, i.e., 0.104 MB, while utilizing the intervals 

concept. Thus, a huge transmission gap is observable for a video 

of only 9- to 14-minute duration and is elevated exponentially if 

applied to a whole-day surveillance video and even more for 

week- and month-long videos. Despite the high-level of 

transmission relaxation, the resulting frames with events are 

effective and useful for future analysis, such as video retrieval, 

detailed events’ investigation, etc. For detailed information about 

the prioritization concepts when applied to distributed sensors, 

readers are referred to our recent research, where inter-view 

correlations among different views are also considered while 

generating the final summary, but their mechanism is not 

deployable over resource-constrained devices. A detailed 

transmission latencies evaluation over the Office dataset is 

provided in Figure 3, where a huge latency difference (in seconds) 

is observable for prioritized frames using intervals concept. The 

latency values are calculated using the generic formula that sums 

up propagation, transmission, and queuing time for a packet 

transmission. However, since we consider the ideal transmission 

situation, the queue delay time is ignored. 

 
Table II: Experimental results of the proposed framework over Office multi-view dataset videos. The total number of frames and their 

corresponding size (in MBs) after applying the proposed prioritization framework and encoding scheme are marginally decreased. 

Video # 

Total Frames 
Overall prioritized data 

transmission 

Single frame selection from an 

interval of 15 frames 

# Frames 
Size (MB) 

# Frames 
Size (MB) 

# Frames 
Size (MB) 

Normal Encoded Normal Encoded Normal Encoded 

Office-0 26955 539.1 53.91 776 15.5 1.55 52 1.04 0.104 

Office-1 16329 318.4 32.65 175 3.4 0.006 12 0.2 0.024 

Office-2 20486 307.2 40.97 12641 189.6 25.28 843 12.6 1.686 

Office-3 26948 538.9 53.89 14000 14 28.00 940 0.9 1.880 
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Figure 3: Performance evaluation of the proposed prioritization framework latency rates over Office dataset videos.  

 

The propagation time is computed by dividing the distance 

(500 m in our situation) over speed of light in optical fiber (2×108 

m/s m/s) and the output value is negligible, i.e., 25×10-7. 

Transmission time is computed by dividing the data size over 

bandwidth (considered constant at 1.5 Mbps), which plays a key 
role in the overall latency rate. The data size is directly 

proportional to the transmission time, indicating that a big data 

packet (total frames) poses higher latency compared to the lower-

sized data packet (prioritized frames) transmission. Table II 

presents the experimental results of the proposed framework over 

the Office multi-view dataset videos. It can be seen that the total 

number of frames and their corresponding size (in MBs) 

marginally decreased after applying the proposed data 

prioritization framework and encoding scheme. 

 

5. Open Challenges and Research Directions 
The methods mentioned above still require further 

improvement to ensure efficient communication. To fully leverage 

the benefits of ELI, it is essential to establish a connection with a 

cloud server, divide the heavy computation model of DL into sub-

tasks, and then, with an effective method, spread these tasks 

between the edge devices collaboration. There are various critical 

features to take into consideration for communication 

optimization, cache resources, heterogeneous data, high-

dimensional parameters, and real-time joint optimization. 

Specifically, most communication methods struggle to sustain 

real-time processing, and to pipeline tasks for an optimized 

connection. Further reducing the communication overhead still 

largely remains an open issue, particularly in models comprising 

millions of trainable parameters. 

Benefiting ELI via Cloud Services. Many existing 

techniques, such as recently proposed by Hussain et al. [14] for 

video summarization employ features extraction, activities 
recognition at the edge devices. Although this approach has the 

benefit of instant decision making but it also comes with certain 

limitations such as the computational cost at edge devices 

consume resources at higher ratio. A more sophisticated approach 

is to analyze the data in a detailed manner at cloud analysis centers 

to save the edge resources. A strong communication between the 

edge source and cloud ensures instant decision as well as 

distributing the workload among the adjacent edge devices for 

efficient processing.  

Federated ELI. Mainstream existing techniques for edge 

devices are focused on centralized data acquisition and training. In 
ELI, federated learning can play a significant role that needs to be 

explored. For instance, ELI can be effectively used in intelligent 

transportation, surveillance systems, and smart cities to acquire 

data continuously at any spot, that can be the main cloud server. 

While the model at the edge device can train and update the 

model’s parameters using federated learning concepts without 

acquiring the data locally at the specific machine. Therefore, it can 

extend the real-world scenarios and diversity of the existing data 

at any edge device. 

ELI combines the best of EC with ML to solve problems that 

cloud servers currently face (high latency, reliability, privacy); yet 

this also poses new challenges that must be addressed (e.g., battery 
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consumption, real-time processing, distributed/scalable ML 

pipelines over the network). Some methods have been proposed to 

diminish these problems, but they should be deployed together. 

For instance, data compression, latency reduction, resource 

management, and adaptive transmission are some approaches that 
can help to mitigate these issues. For the future, we firmly 

advocate for more consistent and principled studies concentrating 

on these problems to acquire the rigor and empirical evidence 

needed to make ELI a driver of the next technological decade. 

 

6. Conclusions 

The arrival, development, and massive adoption of ELI can 

surely buttress hundreds of new applications soon. Functionalities, 

as showcased in this review for video data, are promising, yet 

require further sophistication to achieve a sufficient level of 

maturity for practical use. In this survey, we investigated various 

communication methods for ELI, focusing on data compression, 
latency, and resource management. Towards saving 

communication resources and better management, we presented 

an ELI-based video data prioritization framework which only 

considers the data having events. Our framework’s ability to save 

communication resources is experimentally proved. We also listed 

the major limitations, challenges, and directions for further 

research in this domain. 
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